The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin. This study aims to elucidate the role of PACAP as an actin-regulating polypeptide, its effect on actin filament formation, and the underlying regulatory mechanisms. We examined PACAP27, PACAP38, and PACAP6-38, measuring their binding to actin monomers via fluorescence spectroscopy and steady-state anisotropy. Functional polymerization tests were used to track changes in fluorescent intensity over time. Unlike PACAP27, PACAP38 and PACAP6-38 significantly reduced the fluorescence emission of Alexa488-labeled actin monomers and increased their anisotropy, showing nearly identical dissociation equilibrium constants. PACAP27 showed weak binding to globular actin (G-actin), while PACAP38 and PACAP6-38 exhibited robust interactions. PACAP27 did not affect actin polymerization, but PACAP38 and PACAP6-38 accelerated actin incorporation kinetics. Fluorescence quenching experiments confirmed structural changes upon PACAP binding; however, all studied PACAP fragments exhibited the same effect. Our findings indicate that PACAP38 and PACAP6-38 strongly bind to G-actin and significantly influence actin polymerization. Further studies are needed to fully understand the biological significance of these interactions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311697PMC
http://dx.doi.org/10.3390/ijms25158063DOI Listing

Publication Analysis

Top Keywords

pacap38 pacap6-38
20
actin
8
pacap27 pacap38
8
actin monomers
8
actin polymerization
8
pacap
5
pacap38
5
pacap6-38
5
exploring role
4
role neuropeptide
4

Similar Publications

Chemotherapy-induced peripheral neuropathy (CIPN) is a type of peripheral neuropathy that develops in patients treated with certain anticancer drugs. Oxaliplatin (OXA) causes CIPN in approximately 80-90 % of patients; thus, it is necessary to elucidate its underlying mechanism and develop effective treatments and prevention methods. The purpose of this study was to determine whether the pituitary adenylate cyclase-activating polypeptide (PACAP)/PAC1 receptor system in the spinal dorsal horn is involved in OXA-induced acute cold allodynia and examine the effect of a PAC1 receptor antagonist.

View Article and Find Full Text PDF

The behavior and presence of actin-regulating proteins are characteristic of various clinical diseases. Changes in these proteins significantly impact the cytoskeletal and regenerative processes underlying pathological changes. Pituitary adenylate cyclase-activating polypeptide (PACAP), a cytoprotective neuropeptide abundant in the nervous system and endocrine organs, plays a key role in neuron differentiation and migration by influencing actin.

View Article and Find Full Text PDF

Hippocampal PACAP signaling activation triggers a rapid antidepressant response.

Mil Med Res

July 2024

Interdisciplinary Institute for Personalized Medicine in Brain Disorders, Jinan University, Guangzhou, 510632, China.

Background: The development of ketamine-like rapid antidepressants holds promise for enhancing the therapeutic efficacy of depression, but the underlying cellular and molecular mechanisms remain unclear. Implicated in depression regulation, the neuropeptide pituitary adenylate cyclase-activating polypeptide (PACAP) is investigated here to examine its role in mediating the rapid antidepressant response.

Methods: The onset of antidepressant response was assessed through depression-related behavioral paradigms.

View Article and Find Full Text PDF

Unveiling adcyap1 as a protective factor linking pain and nerve regeneration through single-cell RNA sequencing of rat dorsal root ganglion neurons.

BMC Biol

October 2023

Neuroscience Research Institute and Department of Neurobiology, School of Basic Medical Sciences, Key Laboratory for Neuroscience, Ministry of Education/National Health Commission, National Health Commission and State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, 100083, China.

Background: Severe peripheral nerve injury (PNI) often leads to significant movement disorders and intractable pain. Therefore, promoting nerve regeneration while avoiding neuropathic pain is crucial for the clinical treatment of PNI patients. However, established animal models for peripheral neuropathy fail to accurately recapitulate the clinical features of PNI.

View Article and Find Full Text PDF

Aims: Chronic migraine (CM) is a common neurological disorder with complex pathogenesis. Evidence suggests that pituitary adenylate cyclase-activating peptide (PACAP) induces migraine-like attacks and may be potential a new target for migraine treatment, but the therapeutic results of targeting PACAP and its receptors are not uniform. Therefore, the aim of this study was to investigate the regulatory effect of PACAP type I receptor (PAC1R) antagonist, PACAP6-38, on nitroglycerin (NTG)-induced central sensitization in a CM model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!