The ethylene-regulated hypocotyl elongation of involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation. Etiolated seedlings of the loss-of-function mutant of MYC2 or MYC3 were significantly longer than wild-type seedlings. Single- or double-null mutants of MYC2 and MYC3 displayed remarkably enhanced response to ACC(1-aminocyclopropane-1-carboxylate), the ethylene precursor, compared to wild-type seedlings. MYC2 and MYC3 directly bind to the promoter zone of ERF1, strongly suppressing its expression. Additionally, EIN3, a key component in ethylene signaling, interacts with MYC2 or MYC3 and significantly suppresses their binding to ERF1's promoter. MYC2 and MYC3 play crucial roles in the ethylene-regulated expression of functional genes. The results revealed the novel role and functional mechanism of these transcription factors in ethylene signal transduction. The findings provide valuable information for deepening our understanding of their role in regulating plant growth and responding to stress.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311335 | PMC |
http://dx.doi.org/10.3390/ijms25158022 | DOI Listing |
Philos Trans R Soc Lond B Biol Sci
January 2025
Department of Molecular and Cell Biology, University of Cape Town, Rondebosch 7700, South Africa.
Plants are exposed to pathogens at specific, yet predictable times of the day-night cycle. In Arabidopsis, the circadian clock influences temporal differences in susceptibility to the necrotrophic pathogen . The jasmonic acid (JA) pathway regulates immune responses against .
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Key Laboratory of Chinese Medicinal Resources Recycling Utilization of National Administration of Traditional Chinese Medicine, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
Flowering is a critical step in the plant life cycle. Angelica sinensis (Oliv.) Diels is a medicinal crop whose root is a well-known herbal medicine used in Asia.
View Article and Find Full Text PDFPlant J
December 2024
College of Life Sciences, Capital Normal University, Beijing, 100048, China.
Plants are attacked by various insect herbivores. Upon attack-triggered biosynthesis of the phytohormone jasmonates (JAs), the JA receptor CORONATINE INSENSITIVE 1 recruits the JA-ZIM domain (JAZ) repressors for ubiquitination, releases the MYC-MYB transcription factor (TF) complexes, and enhances glucosinolates (GSs) biosynthesis to promote defense against insects in Arabidopsis. However, the negative regulation of JA-regulated defense remains largely unclear.
View Article and Find Full Text PDFInt J Mol Sci
July 2024
Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China.
The ethylene-regulated hypocotyl elongation of involves many transcription factors. The specific role of MYC transcription factors in ethylene signal transduction is not completely understood. The results here revealed that two MYCs, MYC2 and MYC3, act as negative regulators in ethylene-suppressed hypocotyl elongation.
View Article and Find Full Text PDFPlant Physiol
October 2023
Program of Basic Biology, Graduate School of Integrated Science for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan.
Jasmonate (JA) and gibberellins (GAs) exert antagonistic effects on plant growth and development in response to environmental and endogenous stimuli. Although the crosstalk between JA and GA has been elucidated, the role of JA in GA biosynthesis remains unclear. Therefore, in this study, we investigated the mechanism underlying JA-mediated regulation of endogenous GA levels in Arabidopsis (Arabidopsis thaliana).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!