The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311598PMC
http://dx.doi.org/10.3390/ijms25158008DOI Listing

Publication Analysis

Top Keywords

time-dependent manner
12
ischemic retinopathy
8
retinopathy mouse
8
mouse model
8
model investigate
8
common carotid
8
carotid artery
8
artery occlusion
8
optimization ischemic
4
model consequences
4

Similar Publications

Background: Novel platforms using nanotechnology-based medicines have exponentially increased in our daily lives. The unique characteristics of metal oxide and noble metals nanoparticles make them suitable for different fields including antimicrobial agents, cosmetics, textiles, wound dressings, and anticancer drug carriers.

Methods: This study focuses on the biosynthesis of small-sized SNPs using exo-metabolites of Fusarium oxysporum via bioprocess optimization using Plackett-Burman (PBD) and central composite designs (CCD) while evaluating their multifaceted bioactivities.

View Article and Find Full Text PDF

Inflammatory bowel disease, including Crohn's disease and ulcerative colitis, poses an emerging threat as it can lead to colorectal cancer, thrombosis, and other chronic conditions. The present study demonstrated the protective effects of peanut sprout extracts (PSEs) prepared from day 2 to day 7 of germination against lipopolysaccharide (LPS)-induced epithelial barrier breakdown. Although the peanut sprout length increased in a time-dependent manner from day 1 to day 7, the extraction yields remained relatively consistent from day 2 to day 7.

View Article and Find Full Text PDF

Based on the biologically active heterocycle quinoline, we successfully synthesized a series of quinoline-based dihydrazone derivatives (3a-3d). H NMR, C NMR, ESI-HRMS, IR, element analysis, UV/Vis spectroscopy and fluorescence spectroscopy were performed to comprehensively characterize their chemical structures, spectral properties and stability. Nitrosamine impurities were not detected in 3a-3d, and the systemic toxicological assessment indicated that the toxicity of 3a-3d was lower.

View Article and Find Full Text PDF

Antioxidant and anticancer effects of kiwi () fermented beverage using .

Food Sci Biotechnol

January 2025

Department of Food Biotechnology, Dong-A University, 37, Nakdong-Daero 550beon-gil, Sahagu, Busan, 49315 Republic of Korea.

Kiwi fermented beverages utilizing lactic acid bacteria exhibit a decrease in sugar content, pH and increase in total acidity. The maximum CFU is observed in 20% kiwi fermented beverages containing . For the most efficient fermentation conditions, 20% kiwi fermented beverages fermented at 24 h was selected for use in subsequent experiments.

View Article and Find Full Text PDF

Dose-responsive phytotoxicity and oxidative stress induced by metal-organic framework PCN-224 in Arabidopsis thaliana seedlings.

J Hazard Mater

December 2024

Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea. Electronic address:

Metal-organic frameworks (MOFs) are advanced porous materials composed of metal ions and organic ligands, known for their unique structures and fascinating physio-chemical properties. To ensure their safe production and applications, it is crucial to thoroughly investigate their toxicity and environmental hazards. However, the potential risks of MOFs, particularly their impact on plants remained underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!