A Powerful Strategy for Carbon Reduction: Recyclable Mono-Material Polyethylene Functional Film.

Polymers (Basel)

Province Key Lab of Plasma Chemistry and Advanced Materials, Wuhan Institute of Technology, Wuhan 430073, China.

Published: August 2024

Given the abundant plastics produced globally, and the negative environmental impacts of disposable plastic products throughout their life cycle, there has been significant attention drawn by the general public and governments worldwide. Mono-material multilayer packaging is a potent strategy to address the challenge of carbon emissions as it offers specific functionalities (such as strength and barrier properties) through its layers and facilitates recycling. In this study, a five-layer co-extruded polyethylene composite film LLDPE/mPE/PVA/mPE/LLDPE was taken as a model to investigate its mechanical properties and barrier properties after four recycling cycles. The result revealed that the longitudinal tensile strength and transvers tensile were, respectively, dropped from 29.66 MPa and 24.9 MPa to 21.972 MPa and 19.222 MPa after the recycling; it is shown that the film still has good mechanical properties after the recycling cycle. However, a noticeable decline in the barrier properties was observed after the second recycling. In contrast to traditional plastics, a mono-material film with a 10 wt.% circulating mass could reduce CO emissions by 3692.25 kg for every 1.0 ton of plastic products after four recycling cycles.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314730PMC
http://dx.doi.org/10.3390/polym16152196DOI Listing

Publication Analysis

Top Keywords

barrier properties
12
plastic products
8
mechanical properties
8
properties recycling
8
recycling cycles
8
recycling
6
properties
5
powerful strategy
4
strategy carbon
4
carbon reduction
4

Similar Publications

Covalent organic frameworks (COFs) are often employed in oxygen reduction reactions (ORR) for hydrogen peroxide production due to their tunable structures and compositions. However, COF electrocatalysts require precise structural engineering, such as heteroatoms or metal site doping, to modulate the reaction pathway during the ORR process. In this work, we designed a tetraphenyl-p-phenylenediamine based COF electrocatalyst, namely TPDA-BDA, which exhibited excellent two-electron (2e) ORR performance with high H2O2 selectivity of 89.

View Article and Find Full Text PDF

Single-molecule Magnet Properties of Silole- and Stannole-ligated Erbium Cyclo-octatetraenyl Sandwich Complexes.

Chemistry

January 2025

University of Sussex, Department of Chemistry, School of Life Sciences, BN1 9QJ, Brighton, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.

The synthesis, structures and magnetic properties of an η5-silole complex and an η5-stannole complex of erbium are reported. The sandwich complex anions [(η5-CpSi)Er(η8-COT)]- and [(η5-CpSn)Er(η8-COT)]-, where CpSi is [SiC4-2,5-(SiMe3)2-3,4-Ph2]2- (1Si), CpSn is [SnC4-2,5-(SiMe3)2-3,4-Me2]2- (1Sn) and COT = cyclo-octatetraenyl, were obtained as their [K(2.2.

View Article and Find Full Text PDF

Cerebrovascular endothelial cell (EC) subtypes characterized by blood-brain barrier (BBB) properties or fenestrated pores are essential components of brain-blood interfaces, supporting brain function and homeostasis. To date, the origins and developmental mechanisms underlying this heterogeneous EC network remain largely unclear. Using single-cell-resolution lineage tracing in zebrafish, we discover a multipotent vascular niche at embryonic capillary borders that generates ECs with BBB or fenestrated molecular identity.

View Article and Find Full Text PDF

We report on the design and fabrication of a novel circular pillar array as an interfacial barrier for microfluidic microphysiological systems ( ). Traditional barrier interfaces, such as porous membranes and microchannel arrays, present limitations due to inconsistent pore size, complex fabrication and device assembly, and lack of tunability using a scalable design. Our pillar array overcomes these limitations by providing precise control over pore size, porosity, and hydraulic resistance through simple modifications of pillar dimensions.

View Article and Find Full Text PDF

The big potassium (BK) channels remain open with a small limiting probability of ∼ 10 at minimal Ca and negative voltages < -100 mV. The molecular origin and functional significance of such "intrinsic opening" are not understood. Here we combine atomistic simulations and electrophysiological experiments to show that the intrinsic opening of BK channels is an inherent property of the vapor barrier, generated by hydrophobic dewetting of the BK inner pore in the deactivated state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!