This article raises the topic of the critical examination of polypropylene, a key polymeric material, and its extensive application within the automotive industry, particularly focusing on the manufacturing of brake fluid reservoirs. This study aims to enhance the understanding of polypropylene's behavior under mechanical stresses through a series of laboratory destruction tests and numerical simulations, emphasizing the finite element method (FEM). A novel aspect of this research is the introduction of the PEAK parameter, a groundbreaking approach designed to assess the material's resilience against varying states of strain, known as triaxiality. This parameter facilitates the identification of critical areas prone to crack initiation, thereby enabling the optimization of component design with a minimized safety margin, which is crucial for cost-effective production. The methodology involves conducting burst tests to locate crack initiation sites, followed by FEM simulations to determine the PEAK threshold value for the Sabic 83MF10 polypropylene material. The study successfully validates the predictive capability of the PEAK parameter, demonstrating a high correlation between simulated results and actual laboratory tests. This validation underscores the potential of the PEAK parameter as a predictive tool for enhancing the reliability and safety of polypropylene automotive components. The research presented in this article contributes significantly to the field of material science and engineering by providing a deeper insight into the mechanical behavior of polypropylene and introducing an effective tool for predicting crack initiation in automotive components. The findings hold promise for advancing the design and manufacturing processes in the automotive industry, with potential applications extending to other sectors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314204 | PMC |
http://dx.doi.org/10.3390/polym16152128 | DOI Listing |
Sci Rep
January 2025
Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
The magnetic material Nd2Fe14B is one of the strongest magnetic materials found in nature. The demand for the production of these nanoparticles is significantly high due to their exceptional properties. The aim of the present study is to synthesize magnetic nanoparticles of Nd2Fe14B using ethanol in the wet ball milling technique (WBMT).
View Article and Find Full Text PDFSci Rep
January 2025
University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 680-749, Republic of Korea.
This study employed large eddy simulation (LES) with the wall-adapting local eddy-viscosity (WALE) model to investigate transitional flow characteristics in an idealized model of a healthy thoracic aorta. The OpenFOAM solver pimpleFoam was used to simulate blood flow as an incompressible Newtonian fluid, with the aortic walls treated as rigid boundaries. Simulations were conducted for 30 cardiac cycles and ensemble averaging was employed to ensure statistically reliable results.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Food Science and Technology, College of Agriculture, Isfahan University of Technology, Isfahan 84156-83111, Iran; ONIRIS - GEPEA (UMR CNRS 6144), Site de la Géraudière CS 82225, 44322, Nantes cedex 3, France.
This study explores the innovative combined effects of alkaline isolation with ultrasound pretreatment on the physicochemical properties of acorn (Quercus brantii) starch. The optimal pH for maximizing the yield of alkaline-isolated acorn starch (AAS) was determined, followed by comparison with alkaline-isolated defatted acorn starch (ADAS), ultrasound-pretreated acorn starch (UAS), and ultrasound-pretreated defatted acorn starch (UDAS). The results demonstrated substantial improvements in yield and purity, with the highest yield (68.
View Article and Find Full Text PDFJ Biomech
January 2025
Instituto Brasil de Tecnologias da Saúde, Rua Visconde de Piraja, 407 suite 905, Rio de Janeiro, RJ 22410-003, Brazil; Depto. de Diagnóstico por Imagem - Escola Paulista de Medicina, Universidade Federal de São Paulo, R. Napoleão de Barros, 800, São Paulo, SP, Brazil. Electronic address:
Anterior Shoulder Instability (ASI) is a common orthopedic condition often resulting in altered shoulder kinematics. Understanding the biomechanics of the unstable shoulder is critical to determine the most appropriate treatment. This study aims to conduct the first systematic review and meta-analysis of three-dimensional (3D) shoulder kinematic studies in ASI patients.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Department of Pediatrics, Case Western Reserve University, Cleveland, OH, USA; Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, USA.
An understanding of intracellular mechanisms by which fentanyl and other synthetic opioids exert adverse effects on breathing is needed. Using freely moving adult male guinea pigs, we administered the nitric oxide synthase (NOS) inhibitor, L-NAME (N-nitro-L-arginine methyl ester), to determine whether nitrosyl factors, such as nitric oxide and S-nitrosothiols, play a role in fentanyl-induced respiratory depression. Ventilatory parameters were recorded by whole body plethysmography to determine the effects of fentanyl (75 μg/kg, IV) in guinea pigs that had received a prior injection of vehicle (saline), L-NAME or the inactive D-isomer, D-NAME (both at 50 μmol/kg, IV), 15 min beforehand.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!