A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels. | LitMetric

Mechanical Properties of Eco-Friendly, Lightweight Flax and Hybrid Basalt/Flax Foam Core Sandwich Panels.

Materials (Basel)

School of Engineering, College of Science and Engineering, University of Derby, Markeaton Street, Derby DE22 3AW, UK.

Published: August 2024

Greener materials, particularly in sandwich panels, are in increasing demand in the transportation and building sectors to reduce environmental impacts. This shift is driven by strict environmental legislation and the need to reduce material costs and fuel consumption, necessitating the utilisation of more sustainable components in the transportation and construction sectors, with improved load-bearing capabilities and diminished ecological footprints. Therefore, this study aims to analyse and evaluate the structural performance of polyethylene terephthalate (PET) core and flax or basalt/flax FRP sandwich panels as an alternative to conventional synthetic materials. The novel eco-friendly sandwich panels were manufactured using the co-curing technique. Four-point bending, edgewise compression and core shear tests were performed and insights into how the skin properties affect the strength, stiffness and failure mode of specimens were provided. The stress-strain behaviour, facing modulus and strength, flexural rigidity, core shear strength and failure modes were evaluated. The flexural facing modulus of the flax and flax/basalt sandwich skins were found to be 5.1 GPa and 9.8 GPa, respectively. The flexural rigidity of the eco-friendly sandwich panel was compared with published results and demonstrated a promising structural performance. The environmental benefits and challenges were outlined and critically evaluated focusing on transportation and construction applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313447PMC
http://dx.doi.org/10.3390/ma17153842DOI Listing

Publication Analysis

Top Keywords

sandwich panels
16
transportation construction
8
structural performance
8
eco-friendly sandwich
8
core shear
8
facing modulus
8
flexural rigidity
8
sandwich
6
mechanical properties
4
properties eco-friendly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!