AI Article Synopsis

  • Polymer and ceramic composites enhance dielectric permittivity, crucial for capacitive applications.
  • The study combines empirical models to estimate effective permittivity with Barium Titanate and Calcium Copper Titanate as fillers in a PDMS polymer matrix.
  • Results show that increasing filler content boosts capacitance and energy storage, with CCTO/PDMS demonstrating the best performance, while varying pressure also positively affects mechanical properties.

Article Abstract

Polymer and ceramic-based composites offer a unique blend of desirable traits for improving dielectric permittivity. This study employs an empirical approach to estimate the dielectric permittivity of composite materials and uses a finite element model to understand the effects of permittivity and filler concentration on mechanical and electrical properties. The empirical model combines the Maxwell-Wagner-Sillars (MWS) and Bruggeman models to estimate the effective permittivity using Barium Titanate (BT) and Calcium Copper Titanate Oxide (CCTO) as ceramic fillers dispersed in a Polydimethylsiloxane (PDMS) polymer matrix. Results indicate that the permittivity of the composite improves with increased filler content, with CCTO/PDMS emerging as the superior combination for capacitive applications. Capacitance and energy storage in the CCTO/PDMS composite material reached 900 nF and 450 nJ, respectively, with increased filler content. Additionally, increased pressure on the capacitive model with varied filler content showed promising effects on mechanical properties. The interaction between BT filler and the polymer matrix significantly altered the electrical properties of the model, primarily depending on the composite's permittivity. This study provides comprehensive insights into the effects of varied filler concentrations on estimating mechanical and electrical properties, aiding in the development of real-world pressure-based capacitive models.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312863PMC
http://dx.doi.org/10.3390/ma17153837DOI Listing

Publication Analysis

Top Keywords

electrical properties
12
filler content
12
mechanical properties
8
finite element
8
dielectric permittivity
8
permittivity study
8
permittivity composite
8
mechanical electrical
8
polymer matrix
8
increased filler
8

Similar Publications

Enhanced Anti-Interference Photoelectrochemical DNA Bioassay: Grafting a Peptide-Conjugated Hairpin DNA Probe on a COF-Based Photocathode.

ACS Sens

January 2025

Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.

Precise and sensitive analysis of specific DNA in actual human bodily fluids is crucial for the early diagnosis of major diseases and for a deeper understanding of DNA functions. Herein, by grafting a peptide-conjugated hairpin DNA probe to a covalent organic framework (COF)-based photocathode, a robust anti-interference photoelectrochemical (PEC) DNA bioassay was explored, which could specifically resist potential interference from nonspecific proteins and reducing species. Human immunodeficiency virus (HIV) DNA was used as the target DNA (tDNA) for the PEC DNA bioassay.

View Article and Find Full Text PDF

Waste polyethylene (WPE) and virgin polyethylene (VPE) (50:50) thermoplastic have been melt-mixed with biochar (BC) made from orange peels at ratios of 5, 10, and 15(Phr) to evaluate how the filler content affected the mechanical, thermal, optical, electrical conductivity, and electromagnetic interference (EMI). γ-rays was applied to the prepared specimens to assess how radiation affected the created biocomposites. From the obtained results, the combination of BC with γ-rays, at doses of up to 100 kGy, with thermoplastic resulted in an enhanced mechanical property, particularly for composites containing 15 Phr of BC added because of its unique structure and excellent dispersion.

View Article and Find Full Text PDF

Electronic devices cover a large subset of daily life gadgets which use power to run, hence increasing the load of the energy needs and indirectly impacting greenhouse gas emissions. Smart electrochromic windows provide a solution to this through remarkable energy saving by adjusting optical behavior depending on the environmental conditions. Since the electrochromic windows also need power to run, a self-powered electrochromic panel will be a better solution.

View Article and Find Full Text PDF

Stroke severity shapes extracellular vesicle profiles and their impact on the cerebral endothelial cells.

J Physiol

January 2025

Vascular Physiology Laboratory, Group of Research and Innovation in Vascular Health, Department of Basic Sciences, Faculty of Basic Sciences, Universidad del Bío-Bío, Chillán, Chile.

Ischaemic stroke is a leading cause of death and disability. Circulating extracellular vesicles (EVs) post-stroke may help brain endothelial cells (BECs) counter ischaemic injury. However data on how EVs from ischaemic stroke patients, considering injury severity, affect these cells are limited.

View Article and Find Full Text PDF

Enhancing Optical Properties of Lead-Free CsNaBiCl Nanocrystals via Indium Alloying.

Inorg Chem

January 2025

School of Materials Science and Engineering, Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, Changzhou University, Changzhou 213164, PR China.

This study presents the synthesis and characterization of CsNaBiCl nanocrystals (NCs) doped with varying concentrations of In to improve their luminescent properties. Utilizing a colloidal solution method, we systematically varied the In concentration to identify the optimal alloying level for enhancing the photoluminescence (PL) properties of the CsNaBiCl NCs. Structural analysis confirmed that the In-alloyed NCs maintained high crystallinity and a uniform cubic shape.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!