ScAlMgO (SCAM), which can be used as an epitaxial substrate material of GaN in power devices, faces the challenge of achieving a high-quality surface by ultra-precision polishing due to its brittle and easily cleaved characteristics, which are closely associated with its mechanical properties. The micromechanical properties of SCAM single crystals were evaluated by nanoindentation and microscratch tests using different indenters. The elastic modulus and the indentation hardness of SCAM obtained by nanoindentation were 226 GPa and 12.1 GPa, respectively. Leaf-shaped chips and the associated step-like planes of SCAM can be found in the severely damaged regime during scratching by Berkovich and Vickers indenters with sharp edges due to the intersection of intense radial and lateral cracks. The fracture toughness ( = 1.12 MPa·m) of SCAM can be obtained by using a scratch-based methodology for a spherical indenter based on linear elastic fracture mechanics (LEFM) under an appropriate range of applied loads. An optimal expression for calculating the fracture toughness of easily cleaved materials, including SCAM, via the Vickers indenter-induced cracking method using a Berkovich indenter was recommended.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313593 | PMC |
http://dx.doi.org/10.3390/ma17153811 | DOI Listing |
PLoS One
December 2024
Mesa Photonics, Santa Fe, NM, United States of America.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its variants are a continuous threat to human life. An urgent need remains for simple and fast tests that reliably detect active infections with SARS-CoV-2 and its variants in the early stage of infection. Here we introduce a simple and rapid activity-based diagnostic (ABDx) test that identifies SARS-CoV-2 infections by measuring the activity of a viral enzyme, Papain-Like protease (PLpro).
View Article and Find Full Text PDFPlant Methods
December 2024
Department of Molecular Genetics, Dong-A University, Saha-gu Nakdong-Daero 550 beongil 37, Busan, 49315, Republic of Korea.
Background: Genetic markers are crucial for breeding crops with desired agronomic traits, and their development can be expedited using next-generation sequencing (NGS) and bioinformatics tools. Numerous tools have been developed to design molecular markers, enhancing the convenience, accuracy, and efficiency of molecular breeding. However, these tools primarily focus on genetic variants within short user-input sequences, despite the availability of extensive omics data for genomic variants.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing 400044, PR China.
The CRISPR/Cas technology shows great potential in molecular detection and diagnostics. However, it is still challenging to detect multiple targets simultaneously using the CRISPR-Cas system. Herein, we ingeniously leverage the synergistic effect of two short single-stranded DNA activators to construct a CRISPR/Cas12a-driven electrochemical sensing platform based on an AND logic circuit ("AND" LC-CRISPR) for the simultaneous detection of dual miRNAs.
View Article and Find Full Text PDFAnal Chem
December 2024
Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, Institute of Developmental Biology and Regenerative Medicine, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
Single nucleotide polymorphism (SNP) primarily refers to DNA sequence polymorphism caused by variations in a single nucleotide, which is closely associated with many diseases such as genetic disorders and tumors. However, trace DNA mutants typically exist in a large pool of wild-type DNA, making it challenging to establish accurate and sensitive approaches for SNP detection. Herein, we developed an advanced ligase chain reaction (LCR) strategy to output the circular DNA walker for signal amplification, which realized accuracy and sensitive SNP detection based on the electrochemiluminescent (ECL) platform.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China.
Endoscopes, a minimally invasive medical tool, are susceptible to impaired visibility due to the adhesion of biological fluids. However, traditional self-cleaning coatings face limitations in terms of transparency and sustainability, making it difficult to apply them to lenses. Inspired by the phospholipid layer of the eye, a reversible lubricating layer (RL-layer) with low-adhesion and high-transparency properties is reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!