Defect single-photon emitters (SPE) in gallium nitride (GaN) have garnered great attentions in recent years due to the advantages they offer, including the ability to operate at room temperature, narrow emission linewidths, and high brightness. Nevertheless, the precise nature of the single-photon emission mechanism remains uncertain due to the multitude of potential defects that can form in GaN. In this work, our systematical investigation with the ab initio calculation indicates that carbon and silicon, as common dopants in gallium nitride, can interact with intrinsic defects in GaN and form new high-speed defect single-photon sources. Our findings identify a ternary defect NVC that possesses a short lifetime of less than 1 ns and a small zero-photon line (ZPL) of 864 nm. In other words, this defect can serve as a high-speed single photon source in the short wavelength window for fiber communication. In sharp contrast, the Si-supported defect NVSi has a higher unoccupied defect energy level which enters the conduction band and is therefore unsuitable for single photon emission. A systematic investigation has been conducted into the potential defects, thermal stability, and single-photon emission properties. The relaxation calculation and self-consistent calculations employed the Perdew-Burke-Ernzerhof exchange-correlation functional and Heyd-Scuseria-Ernzerhof exchange-correlation functional, respectively. These findings indicate the potential for high-performance single-photon sources through carbon or silicon doping of GaN.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11312604PMC
http://dx.doi.org/10.3390/ma17153788DOI Listing

Publication Analysis

Top Keywords

carbon silicon
12
defects gan
8
single-photon emitters
8
defect single-photon
8
gallium nitride
8
single-photon emission
8
potential defects
8
single-photon sources
8
single photon
8
exchange-correlation functional
8

Similar Publications

Preparation of Molecularly Imprinted Electrochemical Sensors and Analysis of the Doping of Epinephrine in Equine Blood.

Sensors (Basel)

December 2024

Shandong Provincial Key Laboratory of Monocrystalline Silicon Semiconductor Materials and Technology, Shandong Provincial Engineering Research Center of Organic Functional Materials and Green Low-Carbon Technology, Shandong Universities Engineering Research Center of Integrated Circuits Functional Materials and Expanded Applications, College of Chemistry and Chemical Engineering, Dezhou University, Dezhou 253023, China.

In this paper, a novel molecularly imprinted polymer membrane modified glassy carbon electrode for electrochemical sensors (MIP-OH-MWCNTs-GCE) for epinephrine (EP) was successfully prepared by a gel-sol method using an optimized functional monomer oligosilsesquioxane-AlO sol-ITO composite sol (ITO-POSS-AlO). Hydroxylated multi-walled carbon nanotubes (OH-MWCNTs) were introduced during the modification of the electrodes, and the electrochemical behavior of EP on the molecularly imprinted electrochemical sensors was probed by the differential pulse velocity (DPV) method. The experimental conditions were optimized.

View Article and Find Full Text PDF

Silicon carbide-based titanium silicon carbide (SiC-TiSiC) composites with low free alloy content and varying TiSiC contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable TiSiC volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased TiSiC content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently.

View Article and Find Full Text PDF

This study examined the effect of partially replacing semi-reinforcing carbon black grade N550 (up to 10 pts. wt.) and fully replacing industrial chalk with natural shungite mineral in industrial formulations of elastomer compositions intended for manufacturing various rubber technical products.

View Article and Find Full Text PDF

Silicon/carbon (Si/C) materials have achieved commercial applications as a solution to the problems of large volume expansion and short lifespan of silicon-based anodes in lithium-ion batteries. However, the potential risk of structural fracture and localized differences in surface adsorption properties lead to difficulties in maintaining the structural integrity of Si/C anodes using conventional binders during repeated lithiation/delithiation. Herein, an aqueous binder (PVA-g-M) based on polyvinyl alcohol (PVA) grafted methacrylic acid (MAA) obtained by self-emulsifyingemulsion polymerization is reported.

View Article and Find Full Text PDF

Commercial SiO Encapsulated in Hybrid Bilayer Conductive Skeleton as Stable Anode Coupling Chemical Prelithiation for Lithium-Ion Batteries.

Small

January 2025

Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, 530004, P. R. China.

Although Silicon monoxide (SiO) is regarded as the most promising next-generation anode material, the large volume expansion, poor conductivity, and low initial Coulombic efficiency (ICE) severely hamper its commercialization application. Designing a multilayer conductive skeleton combined with advanced prelithiation technology is considered an effective approach to address these problems. Herein, a reliable strategy is proposed that utilizes MXene and carbon nanotube (CNT) as dual-conductive skeletons to encapsulate SiO through simple electrostatic interaction for high-performance anodes in LIBs, while also performing chemical prelithiation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!