This study investigates the effects of post-weld heat treatment (PWHT) on the microstructures and mechanical properties of plasma arc-welded 316 stainless steel. The experimental parameters included the solid solution temperatures of 650 °C and 1050 °C, solid solution durations of 1 h and 4 h, and quenching media of water and air. The mechanical properties were evaluated using Vickers hardness testing, tensile testing, scanning electron microscopy (SEM), and optical microscopy (OM). The highest ultimate tensile strength (UTS) of 693.93 MPa and Vickers hardness of 196.4 in the welded zone were achieved by heat-treating at 650 °C for one hour, quenching in water, and aging at 500 °C for 24 h. Heat-treating at 650 °C for one hour, followed by quenching in water and aging at 500 °C for 24 h results in larger dendritic δ grains and contains more σ phase compared to the other conditions, resulting in increased strength and hardness. Additionally, it shows wider and shallower dimple structures, which account for its reduced impact toughness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313327 | PMC |
http://dx.doi.org/10.3390/ma17153768 | DOI Listing |
Nanotechnology
January 2025
MME, Wright State University, 3640 Colonel Glenn Hwy, Lake Campus, 7600 Lake Drive, Lake Campus, Fairborn, Ohio, 45435, UNITED STATES.
Surface induced crystallization/amorphization of a Germanium-antimony-tellurium (GST) nanolayer is investigated using the phase field model. A Ginzburg-Landau (GL) equation introduces an external surface layer (ESL) within which the surface energy and elastic properties are properly distributed. Next, the coupled GL and elasticity equations for the crystallization/amorphization are solved.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
CERN, Geneva, Switzerland.
High-energy nuclear collisions create a quark-gluon plasma, whose initial condition and subsequent expansion vary from event to event, impacting the distribution of the eventwise average transverse momentum [P([p_{T}])]. Disentangling the contributions from fluctuations in the nuclear overlap size (geometrical component) and other sources at a fixed size (intrinsic component) remains a challenge. This problem is addressed by measuring the mean, variance, and skewness of P([p_{T}]) in ^{208}Pb+^{208}Pb and ^{129}Xe+^{129}Xe collisions at sqrt[s_{NN}]=5.
View Article and Find Full Text PDFPLoS One
January 2025
Hebei Yingsheng New Material Technology Co., Ltd., Shijiazhuang, China.
Construction materials are significantly exposed to ecological hazards due to the presence of hazardous chemical constituents found in industrial and agricultural solid wastes. This study aims to investigate the use of sawdust particles (SDPs) and sawdust wastewater (SDW) in alkali-activated composites (AACs) made from a mixture of different silicon-aluminum-based solid wastes (slag powder-SP, red mud-RM, fly ash-FA, and carbide slag-CS). The study examines the impact of SDP content, treated duration of SDPs, and SDW content on both fresh and hardened properties of the AACs, including electrical conductivity, fluidity, density, flexural and compressive strengths, and drying shrinkage.
View Article and Find Full Text PDFSci Adv
January 2025
Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, Department of Materials Science and Engineering, Jilin University, Changchun 130022, China.
Vacancies are crucial for the radiation resistance, strength, and ductility of high-entropy alloys (HEAs). However, complex electronic interactions resulting from chemical disorder prohibit the quantification of vacancy formation energy () and migration barriers (). Herein, we propose an electronic descriptor χ (electronegativity χ and valence-electron number ) to quantify the bonding strength of constituents on the basis of the tight-binding model, which allows us to build analytical models to achieve the site-to-site quantification of and .
View Article and Find Full Text PDFSci Adv
January 2025
Department of Mechanical Engineering, University of Delaware, Newark, DE 19716, USA.
Enhancing transport and chemomechanical properties in cathode composites is crucial for the performance of solid-state batteries. Our study introduces the filler-aligned structured thick (FAST) electrode, which notably improves mechanical strength and ionic/electronic conductivity in solid composite cathodes. The FAST electrode incorporates vertically aligned nanoconducting carbon nanotubes within an ion-conducting polymer electrolyte, creating a low-tortuosity electron/ion transport path while strengthening the electrode's structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!