In this study, we optimized the parameters of diffusion bonding on multi-layered stainless steel 316L and 430 stacks. The preparation process for diffusion bonding is crucial, as the bonding surfaces need to be polished and meticulously cleaned to ensure a smooth bonding process. We fabricated twelve-layer plates consisting of 55 mm × 55 mm × 3 mm and 100 mm × 50 mm × 3 mm dimensions, and the bonding response was investigated by evaluating the tensile strength of the bonding zone under varying bonding conditions, with a bonding temperature ranging from 1000 to 1048 °C, a bond time ranging from 15 to 60 min, pressure ranging from 10 to 25.3 MPa, and under a vacuum environment. SS430 exhibits a significantly higher compression creep rate than SS316L. The compressibility of diffusion welding materials does not impact the diffusion bonding strength. Multi-axial tensile strength tests confirmed strong bonding joint strength in various axes. The tensile strengths of monolithic and Diffusion bonding (DB) specimens tested in parallel are essentially identical. The optimized diffusion bonding parameters (Condition G2C: 1048 °C/25.3 MPa/15 min) are ideal for producing SS316L stainless steel cores in compact heat exchangers, offering a superior bonding quality and reduced costs. These findings have practical implications for the production of stainless steel cores in compact heat exchangers, demonstrating the relevance and applicability of our research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313608 | PMC |
http://dx.doi.org/10.3390/ma17153713 | DOI Listing |
J Phys Chem B
January 2025
Key Laboratory for Ecological Metallurgy of Multimetallic Mineral (Ministry of Education), School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China.
This study employs first-principles molecular dynamics (FPMD) simulations combined with the Voronoi tessellation method to explore the microstructure, transport properties, electronic properties, and Raman spectra of the NaF-AlF-CaF/LiF/KF systems with varying cryolite ratios, additive types, and concentrations. The results indicate that Na, Ca, Li, and K exist in a free state in the molten salts, while Al forms complex ion groups in the form of [AlF] with F, and free F also exists in the molten salts. In the NaF-AlF-CaF system, the average Al-F distance is slightly shorter than that in the other two systems, while the Al-F coordination number is higher in NaF-AlF-LiF.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215137, China.
Composite coatings reinforced with varying mass fractions of SiC particles were successfully fabricated on 316 stainless steel substrates via laser cladding. The phase compositions, elemental distribution, microstructural characteristics, hardness, wear resistance and corrosion resistance of the composite coatings were analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), Vickers hardness testing, friction-wear testing and electrochemical methods. The coatings have no obvious pores, cracks or other defects.
View Article and Find Full Text PDFLangmuir
January 2025
College of Mining Engineering, Taiyuan University of Technology, Taiyuan, Shanxi 030024, China.
Flotation is an interfacial process involving gas, liquid, and solid phases, where polar ionic promoters significantly influence both gas-liquid and solid-liquid interfaces during low-rank coal (LRC) flotation. This study examines how the structures of hydrophilic groups in cation-anion mixed promoters affect the interfacial flotation performance of LRC pulp using flotation tests, surface tension tests, wetting heat tests, and molecular dynamics simulations. Results indicate that cation-anion mixed promoters enhance the LRC floatability to varying degrees.
View Article and Find Full Text PDFFood Res Int
January 2025
Key Laboratory of Modern Preparation of TCM, Ministry of Education, Institute for Advanced Study, Jiangxi University of Chinese Medicine, Nanchang 330004, China. Electronic address:
Polyvinylpyrrolidone K30 was used as the templating agent, and ammonium bicarbonate was used as the pore-forming agent to make porous mannitol and porous lactose by the template and pore-forming agent method, respectively. Compared with the template method, the porous particles prepared by the pore-forming agent method have larger pore diameter (320.276 nm and 250.
View Article and Find Full Text PDFChem Sci
December 2024
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 China
The altered solvation structures and dynamical properties of water molecules at the metal/water interfaces will affect the elementary step of an electrochemical process. Simulating the interfacial structure and dynamics with a realistic representation will provide us with a solid foundation to make a connection with experimental studies. To surmount the accuracy-efficiency tradeoff and provide dynamical insights, we use state-of-the-art machine learning molecular dynamics (MLMD) to study the water exchange dynamics, which are fundamental to adsorption/desorption and electrochemical reaction steps.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!