Ultrasmall nanoparticles (diameter 2 nm) of silver, platinum, and bimetallic nanoparticles (molar ratio of Ag:Pt 0:100; 20:80; 50:50; 70:30; 100:0), stabilized by the thiolated ligand glutathione, were prepared and characterized by transmission electron microscopy, differential centrifugal sedimentation, X-ray photoelectron spectroscopy, small-angle X-ray scattering, X-ray powder diffraction, and NMR spectroscopy in aqueous dispersion. Gold nanoparticles of the same size were prepared as control. The particles were fluorescently labeled by conjugation of the dye AlexaFluor-647 via copper-catalyzed azide-alkyne cycloaddition after converting amine groups of glutathione into azide groups. All nanoparticles were well taken up by HeLa cells. The cytotoxicity was assessed with an MTT test on HeLa cells and minimal inhibitory concentration (MIC) tests on the bacteria and . Notably, bimetallic AgPt nanoparticles had a higher cytotoxicity against cells and bacteria than monometallic silver nanoparticles or a physical mixture of silver and platinum nanoparticles. However, the measured release of silver ions from monometallic and bimetallic silver nanoparticles in water was very low despite the ultrasmall size and the associated high specific surface area. This is probably due to the surface protection by a dense layer of thiolated ligand glutathione. Thus, the enhanced cytotoxicity of bimetallic AgPt nanoparticles is caused by the biological environment in cell culture media, together with a polarization of silver by platinum.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313250PMC
http://dx.doi.org/10.3390/ma17153702DOI Listing

Publication Analysis

Top Keywords

silver nanoparticles
12
silver platinum
12
nanoparticles
11
cytotoxicity bimetallic
8
cells bacteria
8
nanoparticles size
8
thiolated ligand
8
ligand glutathione
8
hela cells
8
bimetallic agpt
8

Similar Publications

WO/Ag/TiO composite photoelectrodes were formed via the high-temperature calcination of a WO film, followed by the sputtering of a very thin silver film and deposition of an overlayer of commercial TiO nanoparticles. These synthetic photoanodes were characterized in view of the oxidation of a model organic compound glucose combined with the generation of hydrogen at a platinum cathode. During prolonged photoelectrolysis under simulated solar light, these photoanodes demonstrated high and stable photocurrents of ca.

View Article and Find Full Text PDF

Today, air pollution is a global environmental problem. A huge amount of explosive and combustible gas emissions that negatively affect nature and human health. Gas sensors are one of the ways to prevent this impact.

View Article and Find Full Text PDF

Bacterial infections are a common cause of clinical complications associated with the use of orthodontic microimplants. Biofilm formation on their surfaces and subsequent infection of peri-implant tissues can result in either exfoliation or surgical removal of these medical devices. In order to improve the properties of microimplants, hybrid coatings enriched with silver nanoparticles, calcium, and phosphorus were investigated.

View Article and Find Full Text PDF

Nanotechnological methods for creating multifunctional fabrics are attracting global interest. The incorporation of nanoparticles in the field of textiles enables the creation of multifunctional textiles exhibiting UV irradiation protection, antimicrobial properties, self-cleaning properties and photocatalytic. Nanomaterials-loaded textiles have many innovative applications in pharmaceuticals, sports, military the textile industry etc.

View Article and Find Full Text PDF

Cytotoxic Effects of ZnO and Ag Nanoparticles Synthesized in Microalgae Extracts on PC12 Cells.

Mar Drugs

December 2024

Interdepartmental Centre of Environmental Science and Engineering (CINSA), University of Cagliari, Via San Giorgio 12, 09124 Cagliari, Italy.

The green synthesis of silver (Ag) and zinc oxide (ZnO) nanoparticles (NPs), as well as Ag/AgO/ZnO nanocomposites (NCs), using polar and apolar extracts of , offers a sustainable method for producing nanomaterials with tunable properties. The impact of the synthesis environment and the nanomaterials' characteristics on cytotoxicity was evaluated by examining reactive species production and their effects on mitochondrial bioenergetic functions. Cytotoxicity assays on PC12 cells, a cell line originated from a rat pheochromocytoma, an adrenal medulla tumor, demonstrated that Ag/AgO NPs synthesized with apolar (Ag/AgO NPs A) and polar (Ag/AgO NPs P) extracts exhibited significant cytotoxic effects, primarily driven by Ag ion release and the disruption of mitochondrial function.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!