A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation. | LitMetric

Multiple Deformation Mechanisms in Adiabatic Shear Bands of a Titanium Alloy during High Strain Rate Deformation.

Materials (Basel)

Department of Mechanical, Industrial and Mechatronics Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada.

Published: July 2024

The occurrence of adiabatic shear bands, as an instability phenomenon, is viewed as a precursor to failure caused by instability at high strain rates. Metastable β titanium alloys are extensively utilized due to their excellent mechanical properties, which are often subjected to high strain rate loads in service conditions. Understanding and studying their adiabatic shear instability behavior is thus crucial for preventing catastrophic failure and enhancing material performance. In this study via detailed microstructural analyses in the adiabatic shear region of a Ti-10V-2Fe-3Al alloy subjected to high strain rates, it was observed that α″ martensitic transformation and nano-twinning plus β-to-α phase transformation with α″ martensite as an intermediate phase occurred, in addition to substantial fine grains. The grain refinement mechanisms were mainly related to dynamic recovery dominated by dislocation migration alongside severe plastic deformation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313234PMC
http://dx.doi.org/10.3390/ma17153645DOI Listing

Publication Analysis

Top Keywords

adiabatic shear
16
high strain
16
shear bands
8
strain rate
8
strain rates
8
subjected high
8
multiple deformation
4
deformation mechanisms
4
adiabatic
4
mechanisms adiabatic
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!