Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Maize ( L.) is one of the most demanded grain crops in the world. Currently, production has exceeded one billion tons and is increasing by 3-5% annually. Such growth is due to the genetic potential of the crop and the use of heterosis F1 hybrids in production. However, the need to produce first-generation seed annually poses significant challenges and is an economically costly technology. A solution to this problem may be the transfer of the asexual (apomictic) mode of reproduction to maize from its wild relative, eastern gamagrass ( L.). In this work, we report the production of 56-chromosome apomictic hybrids of maize ( L.) with eastern gamagrass ( L.) with restored anther fertility. The mode of reproduction of the plant was confirmed by counting chromosomes and sequencing the nuclear gene () and chloroplast tRNA-Leu () gene. These apomictic hybrids had karyotypes of 2n = 56 = [(10Zm(573MB) + 36Td) + 10Zm(611CB)] and 2n = 56 = [(10Zm(611CB) + 36Td) + 10Zm(611CB)]. The resulting hybrids can be widely used as a fodder crop.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314298 | PMC |
http://dx.doi.org/10.3390/plants13152138 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!