In Korea, greenhouses are traditionally used for crop cultivation in the winter. However, due to diverse consumer demands, climate change, and advancements in agricultural technology, more farms are aiming for year-round production. Nonetheless, summer cropping poses challenges such as high temperatures, humidity from the monsoon season, and low light conditions, which make it difficult to grow crops. Therefore, this study aimed to determine the best planting time for summer tomato cultivation in a Korean semi-closed greenhouse that can be both air-conditioned and heated. The experiment was conducted in the Advanced Digital Greenhouse, built by the National Institute of Agricultural Sciences. The tomato seedlings were planted in April, May, and June 2022. Growth parameters such as stem diameter, flowering position, stem growth rate, and leaf shape index were measured, and harvesting was carried out once or twice weekly per treatment from 65 days to 265 days after planting. The light use efficiency and yield per unit area at each planting time was measured. Tomatoes planted in April showed a maximum of 42.9% higher light use efficiency for fruit production and a maximum of 33.3% higher yield. Furthermore, the growth form of the crops was closest to the reproductive growth type. Therefore, among April, May, and June, April is considered the most suitable planting time for summer cultivation, which is expected to contribute to reducing labor costs due to decreased workload and increasing farm income through increased yields. Future research should explore optimizing greenhouse microclimates and developing crop varieties tailored for summer cultivation to further enhance productivity and sustainability in year-round agricultural practices.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314600 | PMC |
http://dx.doi.org/10.3390/plants13152116 | DOI Listing |
JMIR Public Health Surveill
January 2025
Unit of Biostatistics, Epidemiology and Public Health, Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padova, Via Loredan 18, Padova, Italy, 39 049 8275384.
Background: As the COVID-19 pandemic has affected populations around the world, there has been substantial interest in wastewater-based epidemiology (WBE) as a tool to monitor the spread of SARS-CoV-2. This study investigates the use of WBE to anticipate COVID-19 trends by analyzing the correlation between viral RNA concentrations in wastewater and reported COVID-19 cases in the Veneto region of Italy.
Objective: We aimed to evaluate the effectiveness of the cumulative sum (CUSUM) control chart method in detecting changes in SARS-CoV-2 concentrations in wastewater and its potential as an early warning system for COVID-19 outbreaks.
ACS Agric Sci Technol
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process on plant physiology needs to be better understood.
View Article and Find Full Text PDFEcol Evol
January 2025
Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research, Polar Terrestrial Environmental Systems Potsdam Germany.
Mountains with complex terrain and steep environmental gradients are biodiversity hotspots such as the eastern Tibetan Plateau (TP). However, it is generally assumed that mountain terrain plays a secondary role in plant species assembly on a millennial time-scale compared to climate change. Here, we investigate plant richness and community changes during the last 18,000 years at two sites: Lake Naleng and Lake Ximen on the eastern TP with similar elevation and climatic conditions but contrasting terrain.
View Article and Find Full Text PDFFront Plant Sci
January 2025
College of Engineering, South China Agricultural University, Guangzhou, China.
In recent years, as an important part of precision agricultural aviation, the plant protection unmanned aerial vehicle (UAV) has been widely studied and applied worldwide, especially in East Asia. Banana, as a typical large broad-leaved crop, has high requirements for pests and diseases control. The mechanization degree of plant protection management in banana orchard is low.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Guangdong University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, China.
Precise segmentation of unmanned aerial vehicle (UAV)-captured images plays a vital role in tasks such as crop yield estimation and plant health assessment in banana plantations. By identifying and classifying planted areas, crop areas can be calculated, which is indispensable for accurate yield predictions. However, segmenting banana plantation scenes requires a substantial amount of annotated data, and manual labeling of these images is both timeconsuming and labor-intensive, limiting the development of large-scale datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!