The labor shortage and rising costs in the greenhouse industry have driven the development of automation, with the core of autonomous operations being positioning and navigation technology. However, precise positioning in complex greenhouse environments and narrow aisles poses challenges to localization technologies. This study proposes a multi-sensor fusion positioning and navigation robot based on ultra-wideband (UWB), an inertial measurement unit (IMU), odometry (ODOM), and a laser rangefinder (RF). The system introduces a confidence optimization algorithm based on weakening non-line-of-sight (NLOS) for UWB positioning, obtaining calibrated UWB positioning results, which are then used as a baseline to correct the positioning errors generated by the IMU and ODOM. The extended Kalman filter (EKF) algorithm is employed to fuse multi-sensor data. To validate the feasibility of the system, experiments were conducted in a Chinese solar greenhouse. The results show that the proposed NLOS confidence optimization algorithm significantly improves UWB positioning accuracy by 60.05%. At a speed of 0.1 m/s, the root mean square error (RMSE) for lateral deviation is 0.038 m and for course deviation is 4.030°. This study provides a new approach for greenhouse positioning and navigation technology, achieving precise positioning and navigation in complex commercial greenhouse environments and narrow aisles, thereby laying a foundation for the intelligent development of greenhouses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314800PMC
http://dx.doi.org/10.3390/s24154998DOI Listing

Publication Analysis

Top Keywords

positioning navigation
20
uwb positioning
12
positioning
10
robot based
8
multi-sensor fusion
8
navigation technology
8
precise positioning
8
greenhouse environments
8
environments narrow
8
narrow aisles
8

Similar Publications

Comprehensive VR dataset for machine learning: Head- and eye-centred video and positional data.

Data Brief

December 2024

Department of Neurophysics, Philipps University Marburg, Karl-von-Frisch Straße 8a, 35043 Marburg, Hesse, Germany.

We present a comprehensive dataset comprising head- and eye-centred video recordings from human participants performing a search task in a variety of Virtual Reality (VR) environments. Using a VR motion platform, participants navigated these environments freely while their eye movements and positional data were captured and stored in CSV format. The dataset spans six distinct environments, including one specifically for calibrating the motion platform, and provides a cumulative playtime of over 10 h for both head- and eye-centred perspectives.

View Article and Find Full Text PDF

In this study, the present status of the public health and wellness sector in China is examined. The main objective is to evaluate the financial risk among publicly listed companies in the sector. Despite the significant expansion of the industry, research in this domain remains limited.

View Article and Find Full Text PDF

Plexins: Navigating through the Neural Regulation and Brain Pathology.

Neurosci Biobehav Rev

January 2025

Department of Pharmaceutical Sciences, Faculty of Life Sciences, Gurugram University (A State Govt. University), Gurugram, Haryana, India. Electronic address:

Plexins are a family of transmembrane receptors known for their diverse roles in neural development, axon guidance, neuronal migration, synaptogenesis, and circuit formation. Semaphorins are a class of secreted and membrane proteins that act as primary ligands for plexin receptors. Semaphorins play a crucial role in central nervous system (CNS) development by regulating processes such as axonal growth, neuronal positioning, and synaptic connectivity.

View Article and Find Full Text PDF

Introduction During carotid artery stenting (CAS), safe navigation of the guiding catheter (GC) is essential for the success of procedures. However, in cases where stenosis or floating thrombi are located in the common carotid artery (CCA), especially for proximal lesions, advancing the GC without touching the lesions is often difficult. We describe a preliminary experience of the "no-touch" technique for navigating the GC to the CCA using an inner catheter with a specifically designed shape and stiffness optimized to overcome tortuous anatomy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!