Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Federated learning is an effective approach for preserving data privacy and security, enabling machine learning to occur in a distributed environment and promoting its development. However, an urgent problem that needs to be addressed is how to encourage active client participation in federated learning. The Shapley value, a classical concept in cooperative game theory, has been utilized for data valuation in machine learning services. Nevertheless, existing numerical evaluation schemes based on the Shapley value are impractical, as they necessitate additional model training, leading to increased communication overhead. Moreover, participants' data may exhibit Non-IID characteristics, posing a significant challenge to evaluating participant contributions. Non-IID data have greatly affected the accuracy of the global model, weakened the marginal effect of the participants, and led to the underestimated contribution measurement results of the participants. Current work often overlooks the impact of heterogeneity on model aggregation. This paper presents a fair federated learning contribution measurement scheme that addresses the need for additional model computations. By introducing a novel aggregation weight, it enhances the accuracy of the contribution measurement. Experiments on the MNIST and Fashion MNIST dataset show that the proposed method can accurately compute the contributions of participants. Compared to existing baseline algorithms, the model accuracy is significantly improved, with a similar time cost.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314990 | PMC |
http://dx.doi.org/10.3390/s24154967 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!