This paper proposes a novel approach to enhance the multichannel fiber optic sensing systems by integrating an Inverse Fast Fourier Transform-based Deep Neural Network (IFFT-DNN) to accurately predict sensor responses despite signals overlapping and crosstalk between sensors. The IFFT-DNN leverages both frequency and time domain information, enabling a comprehensive feature extraction which enhances the prediction accuracy and reliability performance. To investigate the IFFT-DNN's performance, we propose a multichannel water level sensing system based on Free Space Optics (FSO) to measure the water level at multiple points in remote areas. The experimental results demonstrate the system's high precision, with a Mean Absolute Error (MAE) of 0.07 cm, even in complex conditions. Hence, this system provides a cost-effective and reliable remote water level sensing solution, highlighting its practical applicability in various industrial settings.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314856PMC
http://dx.doi.org/10.3390/s24154903DOI Listing

Publication Analysis

Top Keywords

water level
16
multichannel fiber
8
fiber optic
8
optic sensing
8
sensing systems
8
remote water
8
level sensing
8
enhancing multichannel
4
sensing
4
systems ifft-dnn
4

Similar Publications

To accelerate the water dissociation in the Volmer step and alleviate the destruction of bubbles to the physical structure of catalysts during the alkaline hydrogen evolution, an integrated electrode of cobalt oxide and cobalt-molybdenum oxide grown on Ni foam, named CoO-Co2Mo3O8, is designed. This integrated electrode enhances the catalyst-substrate interaction confirmed by a micro-indentation tester, and thus hinders the destruction of the physical structure of catalysts caused by bubbles. Electrochemical testing shows the occurrence of a surface reconstruction of the integrated electrode, and CoO is transformed into Co(OH)2, denoted as Co(OH)2-Co2Mo3O8.

View Article and Find Full Text PDF

Background: Incorporating organic manure improves soil properties and crop productivity. A long-term study started in October 1967 examined the effects of farmyard manure and nitrogen fertilization on the soil at key growth stages of pearl millet in a pearl millet-wheat cropping system over its 51st cycle.

Results: Applying 15 Mg of farmyard manure (FYM) per hectare in both growing seasons significantly boosted soil organic carbon (SOC), dissolved organic carbon (DOC), and key nutrients compared to one-season application.

View Article and Find Full Text PDF

MC-LR induces and exacerbates Colitis in mice through the JAK1/STAT3 pathway.

J Toxicol Environ Health A

January 2025

Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China.

Inflammatory bowel disease (IBD) is a complex gastrointestinal disorder attributed to genetic and environmental factors. Microcystin-leucine-arginine (MC-LR) is an environmental toxin that accumulates in the gut and produces intestinal damage. The aim of this study was to investigate the effects of exposure to MC-LR on development and progression of IBD as well examine the underlying mechanisms of microcystin-initiated tissue damage.

View Article and Find Full Text PDF

Understanding the distribution of breeding populations of migratory animals in the non-breeding period (migratory connectivity) is important for understanding their response to environmental change. High connectivity (low non-breeding population dispersion) may lower resilience to climate change and increase vulnerability to habitat loss within their range. Very high levels of connectivity are reportedly rare, but this conclusion may be limited by methodology.

View Article and Find Full Text PDF

The Hammam Faraun, Matulla, and Nubia formations in the Ashrafi oil field, in the southern Gulf of Suez, Egypt, are key hydrocarbon reservoirs with significant economic importance. These formations, characterized by their favorable reservoir properties and structural settings, play a crucial role in oil and gas accumulation. Their study provides valuable insights into regional petroleum systems and guides exploration and production activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!