With the development of precision sensing instruments and data storage devices, the fusion of multi-sensor data in gearbox fault diagnosis has attracted much attention. However, existing methods have difficulty in capturing the local temporal dependencies of multi-sensor monitoring information, and the inescapable noise severely decreases the accuracy of multi-sensor information fusion diagnosis. To address these issues, this paper proposes a fault diagnosis method based on dynamic graph convolutional neural networks and hard threshold denoising. Firstly, considering that the relationships between monitoring data from different sensors change over time, a dynamic graph structure is adopted to model the temporal dependencies of multi-sensor data, and, further, a graph convolutional neural network is constructed to achieve the interaction and feature extraction of temporal information from multi-sensor data. Secondly, to avoid the influence of noise in practical engineering, a hard threshold denoising strategy is designed, and a learnable hard threshold denoising layer is embedded into the graph neural network. Experimental fault datasets from two typical gearbox fault test benches under environmental noise are used to verify the effectiveness of the proposed method in gearbox fault diagnosis. The experimental results show that the proposed DDGCN method achieves an average diagnostic accuracy of up to 99.7% under different levels of environmental noise, demonstrating good noise resistance.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315040 | PMC |
http://dx.doi.org/10.3390/s24154887 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!