The Heihe River Basin (HRB), located on the northeast margin of the Qilian Mountains, is China's second largest inland river basin. It is a typical oasis-type agricultural area in northwest China's arid and semiarid areas. It is important to monitor and investigate the spatiotemporal distribution characteristics and mechanisms of surface deformation in HRB for the ecology of inland river basins. In recent years, research on HRB has mainly focused on hydrology, meteorology, geology, or biology. Few studies have conducted wide-area monitoring and mechanism analysis of the surface stability of HRB. In this study, an improved interferometric point target analysis InSAR (IPTA-InSAR) technique is used to process 101 Sentinel-1 SAR images from two adjacent track frames covering the HRB from 2019 to 2020. The wide-area deformation of the HRB is obtained first for this period. The results show that most of the surface around the HRB is relatively stable. There are six areas with an extensive deformation range and magnitude in the plain oasis area. The maximum deformation rate is more than 50 mm/year. The maximum seasonal subsidence and uplift along the satellites' line-of-sight (LOS) direction can be up to -70 mm and 60 mm, respectively. Moreover, we use the Google Earth Engine platform to process the multisource optical images and analyze the deformation areas. The remote sensing indicators of the deformation areas, such as the normalized difference vegetation index (NDVI), soil moisture (SMMI), and precipitation, are obtained during the InSAR monitoring period. We combine these integrated remote sensing results with soil type and precipitation to analyze the surface deformations of the HRB. The spatiotemporal relationships between soil moisture, vegetation cover, and surface deformation of the HRB are revealed. The results will provide data support and reference for the healthy and sustainable development of the inland river basin economic zone.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314984 | PMC |
http://dx.doi.org/10.3390/s24154868 | DOI Listing |
Environ Manage
January 2025
School of Public Policy and Urban Affairs, Northeastern University, Boston, MA, USA.
Riverine flooding is increasing in frequency and intensity, requiring river management agencies to consider new approaches to working with communities on flood mitigation planning. Communication and information sharing between agencies and communities is complex, and mistrust and misinformation arise quickly when communities perceive that they are excluded from planning. Subsequently, riverfront community members create narratives that can be examined as truth regimes-truths created and repeated that indicate how flooding and its causes are understood, represented, and discussed within their communities-to explain why flooding occurs in their area.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Civil Engineering, Beijing Jiaotong University, Beijing 100044, China.
Cemented Sand, Gravel, and Rock (CSGR) dams have traditionally used either Conventional Vibrated Concrete (CVC) or Grout-Enriched Roller Compacted Concrete (GERCC) for protective and seepage control layers in low- to medium-height dams. However, these methods are complex, prone to interference, and uneconomical due to significant differences in the expansion coefficient, elastic modulus, and hydration heat parameters among CSGR, CVC, and GERCC. This complexity complicates quality control during construction, leading to the development of Grout-Enriched Vibrated Cemented Sand, Gravel, and Rock (GECSGR) as an alternative.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
College of Water Conservancy and Civil Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China.
Gasification slag is the solid waste produced in the process of coal gasification. China produces approximately 30 million tons of gasification slag every year, which urgently needs to be recycled in an efficient and sustainable way. This paper discusses the feasibility of using gasification slag as a supplementary cementitious material (SCM).
View Article and Find Full Text PDFJ Hazard Mater
January 2025
School of Civil Engineering and Architecture, Zhejiang University of Science and Technology, Hangzhou, Zhejiang 310023, China; Zhejiang-Singapore Joint Laboratory for Urban Renewal and Future City, Hangzhou 310023, China. Electronic address:
Despite growing attention to the environmental pollution caused by tire wear particles (TWPs), the effects of pristine and photoaged TWPs (P-TWPs and A-TWPs) and their TWP leachates (TWPLs; P-TWPL and A-TWPL) on key nitrogen removal processes in estuarine sediments remain unclear. This study explores the responses of the denitrification rate, anammox rate, and nitrous oxide (NO) accumulation to P-TWP, A-TWP, P-TWPL, and A-TWPL exposure in estuarine sediments, and assesses the potential biotoxic substances present in TWPLs. P-TWPs reduced the denitrification rate by 17.
View Article and Find Full Text PDFWater Res
January 2025
Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
The role of metal resistance on nitrogen metabolism function and community resilience against Cd is important for elucidating the evolutionary dynamics of key ecological functions in river ecosystems. In this study, the response of nitrogen transforming function to Cd exposure in river sediments from the Yangtze River Basin with varying levels of heavy metal contamination history (Cd-contaminated and Cd-free sediments) was compared to understand how Cd influenced nitrogen metabolism under varying metal resistance conditions. The results showed that chronic and persistent Cd pollution of sediments caused an elevation of transport efflux metal resistance genes (MRGs) and a reduction in the uptake MRGs, leading to a stronger tolerance to Cd for Cd-contaminated sediment than Cd-free ones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!