Node localization is critical for accessing diverse nodes that provide services in remote places. Single-anchor localization techniques suffer co-linearity, performing poorly. The reliable multiple anchor node selection method is computationally intensive and requires a lot of processing power and time to identify suitable anchor nodes. Node localization in wireless sensor networks (WSNs) is challenging due to the number and placement of anchors, as well as their communication capabilities. These senor nodes possess limited energy resources, which is a big concern in localization. In addition to convention optimization in WSNs, researchers have employed nature-inspired algorithms to localize unknown nodes in WSN. However, these methods take longer, require lots of processing power, and have higher localization error, with a greater number of beacon nodes and sensitivity to parameter selection affecting localization. This research employed a nature-inspired crow search algorithm (an improvement over other nature-inspired algorithms) for selecting the suitable number of anchor nodes from the population, reducing errors in localizing unknown nodes. Additionally, the weighted centroid method was proposed for identifying the exact location of an unknown node. This made the crow search weighted centroid localization (CS-WCL) algorithm a more trustworthy and efficient method for node localization in WSNs, with reduced average localization error (ALE) and energy consumption. CS-WCL outperformed WCL and distance vector (DV)-Hop, with a reduced ALE of 15% (from 32%) and varying communication radii from 20 m to 45 m. Also, the ALE against scalability was validated for CS-WCL against WCL and DV-Hop for a varying number of beacon nodes (from 3 to 2), reducing ALE to 2.59% (from 28.75%). Lastly, CS-WCL resulted in reduced energy consumption (from 120 mJ to 45 mJ) for varying network nodes from 30 to 300 against WCL and DV-Hop. Thus, CS-WCL outperformed other nature-inspired algorithms in node localization. These have been validated using MATLAB 2022b.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314908PMC
http://dx.doi.org/10.3390/s24154791DOI Listing

Publication Analysis

Top Keywords

node localization
20
crow search
12
weighted centroid
12
nature-inspired algorithms
12
localization
10
nodes
9
wireless sensor
8
sensor networks
8
search weighted
8
centroid method
8

Similar Publications

STMGraph: spatial-context-aware of transcriptomes via a dual-remasked dynamic graph attention model.

Brief Bioinform

November 2024

Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.

Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.

View Article and Find Full Text PDF

Draw+: network-based computational drug repositioning with attention walking and noise filtering.

Health Inf Sci Syst

December 2025

Division of Software, Yonsei University, Mirae Campus, Yeonsedae-gil 1, Wonju-si, 26493 Gangwon-do Korea.

Purpose: Drug repositioning, a strategy that repurposes already-approved drugs for novel therapeutic applications, provides a faster and more cost-effective alternative to traditional drug discovery. Network-based models have been adopted by many computational methodologies, especially those that use graph neural networks to predict drug-disease associations. However, these techniques frequently overlook the quality of the input network, which is a critical factor for achieving accurate predictions.

View Article and Find Full Text PDF

The striatum is divided into two interdigitated tissue compartments, the striosome and matrix. These compartments exhibit distinct anatomical, neurochemical, and pharmacological characteristics and have separable roles in motor and mood functions. Little is known about the functions of these compartments in humans.

View Article and Find Full Text PDF

[Aggressive mucinous tubular and spindle cell carcinoma of the kidney: a clinicopathological and genetic analysis of four cases].

Zhonghua Bing Li Xue Za Zhi

January 2025

Department of Pathology, School of Basic Medical Sciences, Peking University Third Hospital, Peking University Health Science Center, Beijing100191, China.

To understand the clinicopathological and molecular genetic characteristics of aggressive renal mucinous tubular and spindle cell carcinoma (MTSCC). The clinical features, histology, immunophenotype, molecular characteristics and prognosis of 4 cases of metastatic/recurrent renal MTSCC that were submitted to the Peking University Third Hospital (2 cases), Institute of Urology, Peking University (one case) and Zhejiang Provincial People's Hospital (one case) from 2015 to 2020 were retrospectively reviewed and analyzed. Among the four patients, two were male and two were female.

View Article and Find Full Text PDF

Fusobacterium nucleatum is implicated in esophageal cancer; however, its distribution in esophageal cancer tissues remains unknown. This study aimed to clarify the presence and distribution of F. nucleatum in esophageal cancer tissues using fluorescence in situ hybridization (FISH).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!