A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Design Decisions for Wearable EEG to Detect Motor Imagery Movements. | LitMetric

Design Decisions for Wearable EEG to Detect Motor Imagery Movements.

Sensors (Basel)

B105 Electronic Systems Lab, ETSI de Telecomunicación, Universidad Politécnica de Madrid, 28040 Madrid, Spain.

Published: July 2024

The objective of this study was to make informed decisions regarding the design of wearable electroencephalography (wearable EEG) for the detection of motor imagery movements based on testing the critical features for the development of wearable EEG. Three datasets were utilized to determine the optimal acquisition frequency. The brain zones implicated in motor imagery movement were analyzed, with the aim of improving wearable-EEG comfort and portability. Two detection algorithms with different configurations were implemented. The detection output was classified using a tool with various classifiers. The results were categorized into three groups to discern differences between general hand movements and no movement; specific movements and no movement; and specific movements and other specific movements (between five different finger movements and no movement). Testing was conducted on the sampling frequencies, trials, number of electrodes, algorithms, and their parameters. The preferred algorithm was determined to be the FastICACorr algorithm with 20 components. The optimal sampling frequency is 1 kHz to avoid adding excessive noise and to ensure efficient handling. Twenty trials are deemed sufficient for training, and the number of electrodes will range from one to three, depending on the wearable EEG's ability to handle the algorithm parameters with good performance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314849PMC
http://dx.doi.org/10.3390/s24154763DOI Listing

Publication Analysis

Top Keywords

wearable eeg
12
motor imagery
12
movements movement
12
specific movements
12
imagery movements
8
movement specific
8
number electrodes
8
movements
7
wearable
5
design decisions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!