Estimating the Energy Expenditure of Grazing Farm Animals Based on Dynamic Body Acceleration.

Animals (Basel)

Departamento de Eletrónica Telecomunicações and Informática and Instituto de Telecomunicações, Universidade de Aveiro, 3810-198 Aveiro, Portugal.

Published: July 2024

Indirect methods of measuring the energy expenditure of grazing animals using heartbeat variation or accelerometers are very convenient due to their low cost and low intrusiveness, allowing animals to maintain their usual routine. In the case of accelerometers, it is possible to use them to measure activity, as well as to classify animal behavior, allowing their usage in other scenarios. Despite the obvious convenience of use, it is important to evaluate the measurement error and understand the validity of the measurement through a simplistic method. In this paper, data from accelerometers were used to classify behavior and measure animal activity, and an algorithm was developed to calculate the energy expended by sheep. The results of the energy expenditure calculations were subsequently compared with the values reported in the literature, and it was verified that the values obtained were within the reference ranges. Although it cannot be used as a real metering of energy expended, the method is promising, as it can be integrated with other complementary sources of information, such as the evolution of the animal's weight and ingestion time, thus providing assistance in animals' dietary management.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310946PMC
http://dx.doi.org/10.3390/ani14152140DOI Listing

Publication Analysis

Top Keywords

energy expenditure
12
expenditure grazing
8
energy expended
8
estimating energy
4
grazing farm
4
farm animals
4
animals based
4
based dynamic
4
dynamic body
4
body acceleration
4

Similar Publications

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Targeting lipid metabolism: novel insights and therapeutic advances in pancreatic cancer treatment.

Lipids Health Dis

January 2025

Emergency surgery Dapartment (Trauma center), The First Affiliated Hospital, College of Clinical Medicine, Henan University of Science and Technology, Luoyang, 471003, Henan, China.

Lipid metabolism in cancer is characterized by dysregulated lipid regulation and utilization, critical for promoting tumor growth, survival, and resistance to therapy. Pancreatic cancer (PC) is a highly aggressive malignancy of the gastrointestinal tract that has a dismal 5-year survival rate of less than 10%. Given the essential function of the pancreas in digestion, cancer progression severely disrupts its function.

View Article and Find Full Text PDF

Bacillus subtilis HGCC-1 improves growth performance and liver health via regulating gut microbiota in golden pompano.

Anim Microbiome

January 2025

China-Norway Joint Lab on Fish Gastrointestinal Microbiota, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.

Probiotics as green inputs have been reported to regulate metabolism and immunity of fish. However, the mechanisms by which probiotics improve growth and health of fish are unclear. Therefore, the aim of this study was to investigate the effect of Bacillus subtilis HGCC-1, an indigenous probiotic isolated from fish, on growth performance, host lipid metabolism, liver inflammation and gut microbiota of golden pompano.

View Article and Find Full Text PDF

Background: Megalobrama amblycephala presents unsynchronized growth, which affects its productivity and profitability. The liver is essential for substance exchange and energy metabolism, significantly influencing the growth of fish.

Results: To investigate the differential metabolites and genes governing growth, and understand the mechanism underlying their unsynchronized growth, we conducted comprehensive transcriptomic and metabolomic analyses of liver from fast-growing (FG) and slow-growing (SG) M.

View Article and Find Full Text PDF

Background: Mitochondria generate the adenosine triphosphate (ATP) necessary for eukaryotic cells, serving as their primary energy suppliers, and contribute to host defense by producing reactive oxygen species. In many critical illnesses, including sepsis, major trauma, and heatstroke, the vicious cycle between activated coagulation and inflammation results in tissue hypoxia-induced mitochondrial dysfunction, and impaired mitochondrial function contributes to thromboinflammation and cell death.

Methods: A computer-based online search was performed using the PubMed and Web of Science databases for published articles concerning sepsis, trauma, critical illnesses, cell death, mitochondria, inflammation, coagulopathy, and organ dysfunction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!