The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs. An electronic nose was used to evaluate the odor profile. Total high-molecular-weight PAHs ranged from 19.59 to 28.65 µg/kg with butane and from 1.83 to 1.61 µg/kg with hydrogen. Conversely, total low-molecular-weight PAHs went from 184.41 to 286.03 µg/kg with butane and from 36.88 to 41.63 µg/kg with hydrogen. Aldehydes and alkanes were the predominant family in a total of 59 VOCs. Hydrogen gas-grilling reduced significantly ( < 0.05) the generation of VOCs related to lipid oxidation. The odor profile was not modified significantly despite the change of PAHs and VOCs. The findings indicate that hydrogen is a viable alternative to butane for grilling horse meat. Hydrogen gas-grilling may be regarded as a safe cooking procedure of meat from a PAH contamination point and perhaps sustainable environmentally compared to a conventional technique. The present study provides the basis for the use of hydrogen gas in grilled meat.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311495 | PMC |
http://dx.doi.org/10.3390/foods13152443 | DOI Listing |
Foods
August 2024
ISFOOD Research Institute, Public University of Navarre, 31006 Pamplona, Spain.
The effect of fuel (hydrogen vs. butane) on the formation of volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs) was evaluated for grilled horse meat (very low-fat and low-fat) cooking vertically. Gas chromatography-mass spectrometry was used to analyze PAHs and VOCs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!