Chimeric antigen receptor (CAR) T cell therapy has achieved extraordinary success in eliminating B cell malignancies; however, so far, it has shown limited efficacy in the treatment of solid tumors, which is thought to be due to insufficient CAR T cell activation. We hypothesized that the transcription factor PU.1, a master regulator of innate cell functionality, may augment pro-inflammatory CAR T cell activation. T cells were engineered with a CEA-specific CAR together with the constitutive expression of PU.1. CAR-redirected T cell activation was recorded for canonical functionality in vitro under conditions of prolonged repetitive antigen exposure. Ectopic PU.1 expression in CAR T cells upregulated the costimulatory receptors CD40, CD80, CD86, and CD70, which, unexpectedly, did not augment effector functions but hampered the upregulation of 4-1BB, decreased IL-2 production, reduced CAR T cell proliferation, and impaired their cytotoxic capacities. Under "stress" conditions of repetitive engagement of cognate tumor cells, CAR T cells with ectopic PU.1 showed reduced persistence, and finally failed to control the growth of cancer cells. Mechanistically, PU.1 caused CAR T cells to secrete IFN-β, a cytokine known to promote CAR T cell attrition and apoptosis. Collectively, PU.1 can polarize the functional capacities of CAR T cells towards innate cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311516 | PMC |
http://dx.doi.org/10.3390/cancers16152737 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!