Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The average cost to bring a new drug from its initial discovery to a patient's bedside is estimated to surpass $2 billion and requires over a decade of research and development. There is a need for new drug screening technologies that can parse drug candidates with increased likelihood of clinical utility early in development in order to increase the cost-effectiveness of this pipeline. For example, during the COVID-19 pandemic, resources were rapidly mobilized to identify effective therapeutic treatments but many lead antiviral compounds failed to demonstrate efficacy when progressed to human trials. To address the lack of predictive preclinical drug screening tools, PREDICT96-ALI, a high-throughput (n = 96) microphysiological system (MPS) that recapitulates primary human tracheobronchial tissue,is adapted for the evaluation of differential antiviral efficacy of native SARS-CoV-2 variants of concern. Here, PREDICT96-ALI resolves both the differential viral kinetics between variants and the efficacy of antiviral compounds over a range of drug doses. PREDICT96-ALI is able to distinguish clinically efficacious antiviral therapies like remdesivir and nirmatrelvir from promising lead compounds that do not show clinical efficacy. Importantly, results from this proof-of-concept study track with known clinical outcomes, demonstrate the feasibility of this technology as a prognostic drug discovery tool.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adbi.202300511 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!