B cell senescence promotes age-related changes in oral microbiota.

Aging Cell

Department of Molecular Biology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan.

Published: December 2024

In recent years, there has been increasing attention towards understanding the relationship between age-related alterations in the oral microbiota and age-associated diseases, with reports emphasizing the significance of maintaining a balanced oral microbiota for host health. However, the precise mechanisms underlying age-related changes in the oral microbiota remain elusive. We recently reported that cellular senescence of ileal germinal center (GC) B cells, triggered by the persistent presence of commensal bacteria, results in diminished IgA production with aging and subsequent alterations in the gut microbiota. Consequently, we hypothesize that a similar phenomenon may occur in the oral cavity, potentially contributing to age-related changes in the oral microbiota. Examination of p16-luc mice, wherein the expression of the senescent cell marker p16 can be visualized, raised under specific pathogen-free (SPF) or germ-free (GF) conditions, indicated that, unlike ileal GC B cells, the accumulation of senescent cells in GC B cells of cervical lymph nodes increases with age regardless of the presence of commensal bacteria. Furthermore, longitudinal studies utilizing the same individual mice throughout their lifespan revealed concurrent age-related alterations in the composition of the oral microbiota and a decline in salivary IgA secretion. Further investigation involving Rag1 mice transplanted with B cells from wild-type or p16 and p21 -double knockout mice unveiled that B cell senescence leads to reduced IgA secretion and alteration of the oral microbiota. These findings advance our understanding of the mechanism of age-associated changes in the oral microbiota and open up possibilities of their control.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11634744PMC
http://dx.doi.org/10.1111/acel.14304DOI Listing

Publication Analysis

Top Keywords

oral microbiota
32
changes oral
16
age-related changes
12
oral
9
microbiota
9
cell senescence
8
age-related alterations
8
presence commensal
8
commensal bacteria
8
iga secretion
8

Similar Publications

Cannabidiol (CBD) is widely used to alleviate the syndromes of epilepsy. However, the marketed oral CBD formulation has the prominent first-pass effect. Here, a cannabidiol-loaded hollow suppository (CHS) was developed using three-dimensional (3D) printing technology.

View Article and Find Full Text PDF

The respiratory tract harbours microorganisms of the normal host microbiota which are also capable of causing invasive disease. Among these, Neisseria meningitidis a commensal bacterium of the oropharynx can cause meningitis, a disease with epidemic potential. The oral microbiome plays a crucial role in maintaining respiratory health.

View Article and Find Full Text PDF

Type 2 diabetes mellitus (T2DM) is associated with cellular abnormalities, tissue and organ dysfunctions, and periodontitis. This investigation examined the relationship between the oral microbiome and salivary biomarkers in T2DM patients with or without periodontitis. This cohort (35-80 years) included systemically healthy non-periodontitis (NP; n = 31), T2DM without periodontitis (DWoP; n = 32) and T2DM with periodontitis (DWP; n = 29).

View Article and Find Full Text PDF

Premalignant lesions of the oral cavity: a narrative review of factors and mechanisms of transformation into cancer.

Int J Oral Maxillofac Surg

December 2024

Department of Head and Neck Tumors, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.

Oral squamous cell carcinoma (OSCC) is the most common type of head and neck cancer. The development and progression of OSCC are closely linked to various aetiological factors. Early signs of OSCC may manifest as oral lesions, genetic abnormalities, and chronic inflammation.

View Article and Find Full Text PDF

Background: Exposure of critically ill patients to antibiotics lead to intestinal dysbiosis, which often manifests as antibiotic-associated diarrhoea. Faecal microbiota transplantation restores gut microbiota and may lead to faster resolution of diarrhoea.

Methods: Into this prospective, multi-centre, randomized controlled trial we will enrol 36 critically ill patients with antibiotic-associated diarrhoea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!