A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

AI support for colonoscopy quality control using CNN and transformer architectures. | LitMetric

Background: Construct deep learning models for colonoscopy quality control using different architectures and explore their decision-making mechanisms.

Methods: A total of 4,189 colonoscopy images were collected from two medical centers, covering different levels of bowel cleanliness, the presence of polyps, and the cecum. Using these data, eight pre-trained models based on CNN and Transformer architectures underwent transfer learning and fine-tuning. The models' performance was evaluated using metrics such as AUC, Precision, and F1 score. Perceptual hash functions were employed to detect image changes, enabling real-time monitoring of colonoscopy withdrawal speed. Model interpretability was analyzed using techniques such as Grad-CAM and SHAP. Finally, the best-performing model was converted to ONNX format and deployed on device terminals.

Results: The EfficientNetB2 model outperformed other architectures on the validation set, achieving an accuracy of 0.992. It surpassed models based on other CNN and Transformer architectures. The model's precision, recall, and F1 score were 0.991, 0.989, and 0.990, respectively. On the test set, the EfficientNetB2 model achieved an average AUC of 0.996, with a precision of 0.948 and a recall of 0.952. Interpretability analysis showed the specific image regions the model used for decision-making. The model was converted to ONNX format and deployed on device terminals, achieving an average inference speed of over 60 frames per second.

Conclusions: The AI-assisted quality system, based on the EfficientNetB2 model, integrates four key quality control indicators for colonoscopy. This integration enables medical institutions to comprehensively manage and enhance these indicators using a single model, showcasing promising potential for clinical applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316311PMC
http://dx.doi.org/10.1186/s12876-024-03354-0DOI Listing

Publication Analysis

Top Keywords

quality control
12
cnn transformer
12
transformer architectures
12
efficientnetb2 model
12
colonoscopy quality
8
models based
8
based cnn
8
model
8
model converted
8
converted onnx
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!