A programmatically described solution to the segmentation problem is taken as opportunity to dicuss the neural architecture problem of vision. At the center of this problem is the formation of holistic entities (the Gestalt phenomenon) out of masses of neurons (the binding problem). As formulated in the Dynamic Net Architecture (DNA), neurons can become part of a (short-term) stable state only if supported inside a coherent network ('net'). Integration into nets is the basis for global treatment of structures, such as recognition as rigid body or projection to an invariant model.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10339-024-01214-zDOI Listing

Publication Analysis

Top Keywords

segmentation binding
4
binding computed
4
computed represented
4
represented brain?
4
brain? programmatically
4
programmatically described
4
described solution
4
solution segmentation
4
problem
4
segmentation problem
4

Similar Publications

Highly sensitive surface-enhanced Raman scattering detection of adenosine triphosphate based on core-satellite assemblies.

Anal Methods

November 2017

Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.

As an important small molecule, adenosine triphosphate (ATP) plays an important role in the regulation of cell metabolism and supplies energy for various biochemical reactions in organisms. We herein developed a sensitive surface-enhanced Raman scattering (SERS) biosensor for highly specific detection of ATP using core-satellite assemblies. To construct the aptamer-based biosensor, a known ATP binding aptamer was divided into two segments.

View Article and Find Full Text PDF

Introduction: Greater white matter hyperintensities (WMHs) on magnetic resonance imaging (MRI) are seen with transactive response DNA-binding protein 43 (TDP-43) pathology in frontotemporal lobar degeneration (FTLD-TDP). WMH associations with TDP-43 pathology in Alzheimer's disease (AD-TDP) remain unclear.

Methods: A total of 157 participants from Mayo Clinic Rochester with autopsy-confirmed AD, known TDP-43 status, and antemortem fluid-attenuated inversion recovery (FLAIR) MRI were included.

View Article and Find Full Text PDF

Spinal cord injuries (SCIs) often lead to lifelong disability. Among the various types of injuries, incomplete and discomplete injuries, where some axons remain intact, offer potential for recovery. However, demyelination of these spared axons can worsen disability.

View Article and Find Full Text PDF

Natural Organic Matter Stabilizes Pristine Nanoplastics but Destabilizes Photochemical Weathered Nanoplastics in Monovalent Electrolyte Solutions.

Environ Sci Technol

January 2025

Section of Sanitary Engineering, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands.

Photochemical weathering and eco-corona formation through natural organic matter (NOM) adsorption play vital roles in the aggregation tendencies of nanoplastics (NPs) in aquatic environments. However, it remains unclear how photochemical weathering alters the adsorption patterns of NOM and the conformation of the eco-corona, subsequently affecting the aggregation tendencies of NPs. This study examined the effect of Suwannee River NOM adsorption on the aggregation kinetics of pristine and photoaged polystyrene (PS) NPs in monovalent electrolyte solutions.

View Article and Find Full Text PDF

Surface-anchored metal-organic frameworks (surMOFs) are crystalline, nanoporous, supramolecular materials mounted to substrates that have the potential for integration within device architectures relevant for a variety of electronic, photonic, sensing, and gas storage applications. This research investigates the thin film formation of the Cu-BDC (copper benzene-1,4-dicarboxylate) MOF system on a carboxylic acid-terminated self-assembled monolayer by alternating deposition of solution-phase inorganic and organic precursors. X-ray diffraction (XRD) and atomic force microscopy (AFM) characterization demonstrate that crystalline Cu-BDC thin films are formed via Volmer-Weber growth.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!