In recent studies, artificial intelligence and machine learning methods give higher accuracy than other prediction methods in large data sets with complex structures. Instead of statistical methods, artificial intelligence, and machine learning are used due to the difficulty of constructing mathematical models in multi-parameter and multivariate problems. In this study, predictions of length-weight relationships and meat productivity were generated by machine learning models using measurement data of male and female crayfish in the narrow-clawed crayfish population living in Apolyont Lake. The data set was created using the growth performance and morphometric characters from 1416 crayfish in different years to determine the length-weight relationship and length-meat yield. Statistical methods, artificial intelligence, and machine learning are used due to the difficulty of constructing mathematical models in multi-parameter and multivariate problems. The analysis results show that most models designed as an alternative to traditional estimation methods in future planning studies in sustainable fisheries, aquaculture, and natural sources management are valid for machine learning and artificial intelligence. Seven different machine learning algorithms were applied to the data set and the length-weight relationships and length-meat yields were evaluated for both male and female individuals. Support vector regression (SVR) has achieved the best prediction performance accuracy with 0.996 and 0.992 values for the length-weight of males and females, with 0.996 and 0.995 values for the length-meat yield of males and females. The results showed that the SVR outperforms the others for all scenarios regarding the accuracy, sensitivity, and specificity metrics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315914 | PMC |
http://dx.doi.org/10.1038/s41598-024-69539-5 | DOI Listing |
Sci Rep
December 2024
The School of Nursing, Fujian Medical University, No. 1 Xuefu North Road, Fuzhou, 350122, Fujian, China.
Diabetes Mellitus combined with Mild Cognitive Impairment (DM-MCI) is a high incidence disease among the elderly. Patients with DM-MCI have considerably higher risk of dementia, whose daily self-care and life management (i.e.
View Article and Find Full Text PDFSci Rep
December 2024
School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, 430070, China.
Urban rail transit systems, represented by subways, have significantly alleviated the traffic pressure brought by urbanization and have addressed issues such as traffic congestion. However, as a commonly used construction method for subway tunnels, shield tunneling inevitably disturbs the surrounding soil, leading to uneven ground surface settlement, which can impact the safety of nearby buildings. Therefore, it is crucial to promptly obtain and predict the ground surface settlement induced by shield tunneling construction to enable safety warnings and evaluations.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Theoretical Electrical Engineering and Diagnostics of Electrical Equipment, Institute of Electrodynamics, National Academy of Sciences of Ukraine, Beresteyskiy, 56, Kyiv-57, 03680, Kyiv, Ukraine.
The integration of Electric Vehicles (EVs) into power grids introduces several critical challenges, such as limited scalability, inefficiencies in real-time demand management, and significant data privacy and security vulnerabilities within centralized architectures. Furthermore, the increasing demand for decentralized systems necessitates robust solutions to handle the growing volume of EVs while ensuring grid stability and optimizing energy utilization. To address these challenges, this paper presents the Demand Response and Load Balancing using Artificial intelligence (DR-LB-AI) framework.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Pharmaceutics, College of Pharmacy, University of Ha'il, Ha'il, 81442, Saudi Arabia.
This research article presents a thorough and all-encompassing examination of predictive models utilized in the estimation of viscosity for ionic liquid solutions. The study focuses on crucial input parameters, namely the type of cation, the type of anion, the temperature (measured in Kelvin), and the concentration of the ionic liquid (expressed in mol%). This study assesses three influential machine learning algorithms that are based on the Decision Tree methodology.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
Using Fourier Transform Infrared spectroscopy (FTIR), it is possible to show chemical composition of materials and / or profile chemical changes occurring in tissues, cells, and body fluids during onset and progression of diseases. For diagnostic application, the use of blood would be the most appropriate in biospectroscopy studies since, (i) it is easily accessible and, (ii) enables frequent analyses of biochemical changes occurring in pathological states. At present, different studies have investigated potential of serum, plasma and sputum being alternative biofluids for lung cancer detection using FTIR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!