A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Comparison of beta peak detection algorithms for data-driven deep brain stimulation programming strategies in Parkinson's disease. | LitMetric

Oscillatory activity within the beta frequency range (13-30 Hz) serves as a Parkinson's disease biomarker for tailoring deep brain stimulation (DBS) treatments. Currently, identifying clinically relevant beta signals, specifically frequencies of peak amplitudes within the beta spectral band, is a subjective process. To inform potential strategies for objective clinical decision making, we assessed algorithms for identifying beta peaks and devised a standardized approach for both research and clinical applications. Employing a novel monopolar referencing strategy, we utilized a brain sensing device to measure beta peak power across distinct contacts along each DBS electrode implanted in the subthalamic nucleus. We then evaluated the accuracy of ten beta peak detection algorithms against a benchmark established by expert consensus. The most accurate algorithms, all sharing similar underlying algebraic dynamic peak amplitude thresholding approaches, matched the expert consensus in performance and reliably predicted the clinical stimulation parameters during follow-up visits. These findings highlight the potential of algorithmic solutions to overcome the subjective bias in beta peak identification, presenting viable options for standardizing this process. Such advancements could lead to significant improvements in the efficiency and accuracy of patient-specific DBS therapy parameterization.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11315991PMC
http://dx.doi.org/10.1038/s41531-024-00762-7DOI Listing

Publication Analysis

Top Keywords

beta peak
16
peak detection
8
detection algorithms
8
deep brain
8
brain stimulation
8
parkinson's disease
8
expert consensus
8
beta
7
peak
6
comparison beta
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!