A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Multiplex fluorescence loop-mediated isothermal amplification with lateral flow assay for rapid simultaneous detection of mecA and nuc genes in methicillin-resistant Staphylococcus aureus. | LitMetric

Multiplex fluorescence loop-mediated isothermal amplification with lateral flow assay for rapid simultaneous detection of mecA and nuc genes in methicillin-resistant Staphylococcus aureus.

Anal Chim Acta

Institute for Smart Farm, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea; Division of Food Science and Technology, Gyeongsang National University, Jinju, Gyeongnam, 52828, South Korea. Electronic address:

Published: August 2024

Background: Antibiotic-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), pose a significant threat to public health. Existing detection methods, like cultivation-based techniques, demand significant time and labor, while molecular diagnostic techniques, such as PCR, necessitate sophisticated instrumentation and skilled personnel. Although previous multiplex loop-mediated isothermal amplification assays based on fluorescent dyes (mfLAMP) offer simplicity and cost-effectiveness, they are prone to false-positive results. Therefore, developing a rapid and efficient multiplex assay for high-sensitivity MRSA is imperative to create a practical diagnostic tool for point-of-care testing.

Results: Here, we developed a mfLAMP combined with a lateral flow assay (mfLAMP-LFA) for the visual and simultaneous detection of the mecA (PBP2a-specific marker) and nuc (S. aureus-specific marker) genes in MRSA. We optimized mfLAMP-LFA using graphene oxide (GO)-based purification and specific DNA probes and evaluated its sensitivity, specificity, and stability. Utilizing GO to mitigate false-positive results by acting as a trap for free DNA probes, the mfLAMP-LFA method successfully identified mecAf and nucf-probes, exhibiting distinct red, green, and yellow fluorescence signals. The detection sensitivity of the developed mfLAMP-LFA method (1 CFU mL in phosphate-buffered saline (PBS)) was comparable to other highly sensitive MRSA detection methods (1 CFU mL in PBS). Furthermore, the method demonstrated specificity for MRSA, detecting it in irrigation water samples within the desired range and achieving reliable recovery rates from spiked samples.

Significance: This novel strategy is the first to incorporate GO into mfLAMP-LFA, enabling specific and sensitive MRSA detection and advancing rapid bacterial detection. This assay facilitates MRSA diagnostics, contributing to improved public health and food safety by delivering rapid, cost-effective point-of-care results. It enables the simultaneous detection of multiple bacteria, even in irrigation water samples artificially inoculated with MRSA, which contain aerobic bacteria at 2.7 × 10 CFU mL.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342984DOI Listing

Publication Analysis

Top Keywords

simultaneous detection
12
loop-mediated isothermal
8
isothermal amplification
8
lateral flow
8
flow assay
8
detection
8
detection meca
8
methicillin-resistant staphylococcus
8
staphylococcus aureus
8
mrsa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!