A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The sensing of circRNA with tetrahedral DNA nanostructure modified microfluidic chip. | LitMetric

Background: Circular ribonucleic acids (circRNAs) are a type of covalently closed noncoding RNA with disease-relevant expressions, making them promising biomarkers for diagnosis and prognosis. Accurate quantification of circRNA in biological samples is a necessity for their clinical application. So far, methods developed for detecting circRNAs include northern blotting, reverse transcription quantitative polymerase chain reaction (RT-qPCR), microarray analysis, and RNA sequencing. These methods generally suffer from disadvantages such as large sample consumption, cumbersome process, low selectivity, leading to inaccurate quantification of circRNA. It was thought that the above drawbacks could be eliminated by the construction of a microfluidic sensor.

Results: Herein, for the first time, a microfluidic sensor was constructed for circRNA analysis by using tetrahedral DNA nanostructure (TDN) as the skeleton for recognition probes and target-initiated hybridization chain reaction (HCR) as the signal amplification strategy. In the presence of circRNA, the recognition probe targets the circRNA-specific backsplice junction (BSJ). The captured circRNA then triggers the HCR by reacting with two hairpin species whose ends were labeled with 6-FAM, producing long DNA strands with abundant fluorescent labels. By using circ_0061276 as a model circRNA, this method has proven to be able to detect circRNA of attomolar concentration. It also eliminated the interference of linear RNA counterpart, showing high selectivity towards circRNA. The detection process can be implemented isothermally and does not require expensive complicated instruments. Moreover, this biosensor exhibited good performance in analyzing circRNA targets in total RNA extracted from cancer cells.

Significance: This represents the first microfluidic system for detection of circRNA. The biosensor showed merits such as ease of use, low-cost, small sample consumption, high sensitivity and specificity, and good reliability in complex biological matrix, providing a facile tool for circRNA analysis and related disease diagnosis in point-of care application scenes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aca.2024.342951DOI Listing

Publication Analysis

Top Keywords

circrna
11
tetrahedral dna
8
dna nanostructure
8
quantification circrna
8
chain reaction
8
sample consumption
8
circrna analysis
8
sensing circrna
4
circrna tetrahedral
4
nanostructure modified
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!