A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Artificial Intelligence Imaging Diagnosis Using Super-Resolution and Three-Dimensional Shape for Lymph Node Metastasis of Low Rectal Cancer: A Pilot Study From a Single Center. | LitMetric

Background: Although accurate preoperative diagnosis of lymph node metastasis is essential for optimizing treatment strategies for low rectal cancer, the accuracy of present diagnostic modalities has room for improvement.

Objective: The study aimed to establish a high-precision diagnostic method for lymph node metastasis of low rectal cancer using artificial intelligence.

Design: A retrospective observational study.

Settings: A single cancer center and a college of engineering in Japan.

Patients: Patients with low rectal adenocarcinoma who underwent proctectomy, bilateral lateral pelvic lymph node dissection, and contrast-enhanced multidetector row CT (slice ≤1 mm) between July 2015 and August 2021 were included in the present study. All pelvic lymph nodes from the aortic bifurcation to the upper edge of the anal canal were extracted, regardless of whether within or beyond the total mesenteric excision area, and pathological diagnoses were annotated for training and validation.

Main Outcome Measures: Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy.

Results: A total of 596 pathologically negative nodes and 43 positive nodes from 52 patients were extracted and annotated. Four diagnostic methods, with and without using super-resolution images and with and without using 3-dimensional shape data, were performed and compared. The super-resolution + 3-dimensional shape data method had the best diagnostic ability for the combination of sensitivity, negative predictive value, and accuracy (0.964, 0.966, and 0.968, respectively), whereas the super-resolution only method had the best diagnostic ability for the combination of specificity and positive predictive value (0.994 and 0.993, respectively).

Limitations: Small number of patients at a single center and the lack of external validation.

Conclusions: Our results enlightened the potential of artificial intelligence for the method to become another game changer in the diagnosis and treatment of low rectal cancer. See Video Abstract .

Diagnstico Por Imgenes Con Inteligencia Artificial Mediante Superresolucin Y Forma D Para La Metstasis En Los Ganglios Linfticos Del Cncer De Recto Bajo Un Estudio Piloto De Un Solo Centro: ANTECEDENTES:Aunque el diagnóstico preoperatorio preciso de metástasis en los ganglios linfáticos es esencial para optimizar las estrategias de tratamiento para el cáncer de recto bajo, la precisión de las modalidades de diagnóstico actuales tiene margen de mejora.OBJETIVO:Establecer un método de diagnóstico de alta precisión para las metástasis en los ganglios linfáticos del cáncer de recto bajo utilizando inteligencia artificial.DISEÑO:Un estudio observacional retrospectivo.AJUSTE:Un único centro oncológico y una facultad de ingeniería en Japón.PACIENTES:En el presente estudio se incluyeron pacientes con adenocarcinoma rectal bajo sometidos a proctectomía, disección bilateral de ganglios linfáticos pélvicos laterales y tomografía computarizada con múltiples detectores con contraste (corte ≤1 mm) entre julio de 2015 y agosto de 2021. Se resecaron todos los ganglios linfáticos pélvicos desde la bifurcación aórtica hasta el borde superior del canal anal, independientemente de si estaban dentro o más allá del área de escisión mesentérica total, y se registraron los diagnósticos patológicos para entrenamiento y validación.PRINCIPALES MEDIDAS DE RESULTADO:Sensibilidad, especificidad, valor predictivo positivo, valor predictivo negativo y precisión.RESULTADOS:Se extrajeron y registraron un total de 596 ganglios patológicamente negativos y 43 positivos de 52 pacientes. Se realizaron y compararon cuatro métodos de diagnóstico, con y sin imágenes de súper resolución y sin datos de imagen en 3D. El método de superresolución + datos de imagen en 3D tuvo la mejor capacidad de diagnóstico para la combinación de sensibilidad, valor predictivo negativo y precisión (0,964, 0,966 y 0,968, respectivamente), mientras que el método de súper resolución solo tuvo la mejor capacidad de diagnóstico para la combinación de especificidad y valor predictivo positivo (0,994 y 0,993, respectivamente).LIMITACIONES:Pequeño número de pacientes en un solo centro y falta de validación externa.CONCLUSIONES:Nuestros resultados iluminan el potencial de la inteligencia artificial para que el método se convierta en otro elemento de cambio en el diagnóstico y tratamiento del cáncer de recto bajo. (Traducción ---Dr. Fidel Ruiz Healy ).

Download full-text PDF

Source
http://dx.doi.org/10.1097/DCR.0000000000003381DOI Listing

Publication Analysis

Top Keywords

low rectal
20
lymph node
16
rectal cancer
16
los ganglios
16
recto bajo
16
ganglios linfáticos
16
valor predictivo
16
node metastasis
12
cáncer recto
12
artificial intelligence
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!