Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The disruption of per- and polyfluoroalkyl substances (PFASs) on bile acid (BA) homeostasis has raised public concerns, making the evaluation of their effects and underlying mechanisms a high priority. Although the use of perfluorooctanoic acid (PFOA) has been restricted, it remains a widespread legacy PFAS in the environment. Concurrently, the use of its prevalent short-chain alternative, perfluorobutanoic acid (PFBA), is increasing, yet the toxicity assessment of PFBA remains inadequate. In this study, C57BL/6N mice were exposed to PFOA and PFBA (0.4 or 10 mg/kg body weight) by gavage for 28 days. The results showed that both PFOA and PFBA significantly increased hepatic weight, although PFBA exhibited lower bioaccumulation than PFOA in the liver. Targeted metabolomics revealed that PFOA significantly decreased total BA levels and altered their composition. Conversely, PFBA, without significantly altering total BA levels, notably changed their composition, such as increasing the proportion of cholic acid. Further investigations using in vivo and in vitro assays suggested that PFOA inhibited the expression of Cyp7A1, a key BA synthetase, potentially via PPARα activation, thereby reducing BA levels. In contrast, PFBA enhanced Cyp7A1 expression, associated with the inhibition of intestinal Farnesoid X receptor-fibroblast growth factor 15 (FXR-FGF15) pathway. This study evaluated the differences in the BA-interfering effects of PFOA and PFBA and shed light on the potential mechanisms, which will provide new insights into the health risks of legacy PFASs and their alternatives.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2024.175312 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!