Superconducting hybrid structures based on single nanowires are a new type of nanoscale devices with peculiar transport characteristics. Control over the nanowire structure is essential for understanding hybrid electronic phenomena arising in such complex systems. In this work, we report a technique for the fabrication of cobalt nanowires by template-assisted electrodeposition usingcompensation, which allows revealing the fundamental dependence of the preferred direction of nanowire growth on the deposition potential. Long coarse-grained cobalt nanowires with a diameter of 70 nm have been implemented into Nb/Co/Nb hybrid structures. We demonstrate that using electrode fabrication techniques that do not contaminate the surface of the nanowire leads to a high quality of devices with low-resistance interfaces. Low-temperature resistivity of 4.94 ± 0.83Ω cm and other transport characteristics of Co nanowires are reported. The absence of long-range superconducting proximity effect for Nb/Co/Nb systems with different nanowire length is discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/ad6d72DOI Listing

Publication Analysis

Top Keywords

cobalt nanowires
12
hybrid structures
8
transport characteristics
8
nanowires
5
controlled electrodeposition
4
electrodeposition cobalt
4
nanowires usingcompensation
4
usingcompensation electron
4
electron transport
4
transport properties
4

Similar Publications

Cobalt phosphide nanoarrays on a borate-modified nickel foam substrate as an efficient dual-electrocatalyst for overall water splitting.

J Colloid Interface Sci

December 2024

School of Chemistry & Chemical Engineering, Guangxi University, Guangxi Key Laboratory of Electrochemical Energy Materials, Nanning 530004, China. Electronic address:

Developing efficient non-noble metal dual-functional electrocatalysts for overall water splitting is essential for the production of green hydrogen. Given the significant advantages of self-supporting electrodes, regulating the growth of self-supporting nanoarrays on a conductive substrate is conducive to improving the electrocatalytic activity. In this work, aligned cobalt phosphide (CoP) nanowire arrays grown on borate-modified Ni foam substrate (CoP/R-NF) were utilized as a bifunctional electrocatalyst for both hydrogen evolution reactions (HER) and oxygen evolution reactions (OER) in alkaline solution.

View Article and Find Full Text PDF

Due to its distinctive structure and unique physicochemical properties, gallium nitride (GaN) has been considered a prospective candidate for lithium storage materials. However, its inferior conductivity and unsatisfactory cycle performance hinder the further application of GaN as a next-generation anode material for lithium-ion batteries (LIBs). To address this, cobalt (Co)-doped GaN (Co-GaN) nanowires have been designed and synthesized by utilizing the chemical vapor deposition (CVD) strategy.

View Article and Find Full Text PDF

H-mediated microbial electrosynthesis (MES) could run under a high current density, but the low solubility of H limited its performance. Reducing the H bubble size facilitates H gas-liquid mass transfer and it has been reported to be realized on superaerophobic electrodes. Therefore, we adopted a CoP nanowire-modified nickel foam (CoP-NiF) as the superaerophobic cathode in a H-mediated MES reactor to enhance the methane production from CO.

View Article and Find Full Text PDF

A perspective on nanomaterials against Campylobacter jejuni biofilm - New control strategies.

Microb Pathog

December 2024

Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. 195, Playa Palo de Santa Rita Sur, 23096, La Paz, B.C.S., Mexico. Electronic address:

Campylobacter jejuni - a Gram-negative bacterium - is considered the fourth cause of diarrheic diseases that can form biofilms (mono and multi-species) or colonize pre-existing biofilms adhering to both, inert or biotic surfaces; its biofilms contribute to transmission through the food chain and survival under harsh environmental conditions. Thus, developing alternatives against this pathogen is compulsory. Nanomaterials have revolutionized the way of fighting infections related to biofilms due to their unique properties compared to traditional antibiotics.

View Article and Find Full Text PDF

Fabrication of polyoxometalate dispersed cobalt oxide nanowires for electrochemically monitoring superoxide radicals from Hela cell mitochondria.

Talanta

January 2025

Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Zhengzhou, 450046, China. Electronic address:

An ultrasensitive electrochemical sensor is constructed by electrostatically adsorbing negatively charged hourglass-shape Cu-Polyoxometalate (POM) onto a positively charged CoO nanowires modified carbon cloth. The petaloid CoO nanowires have a large specific surface area that can well disperse open-structured Cu-POM to form Cu-POM@CoONWs@CC, which can maximumly expose catalytic active centers (Co and Cu) and accelerate mass/charge transfer. In addition to the above advantages, the excellent electron exchange ability of Cu-POM and good conductivity of CoONWs@CC endow the sensor with good detection capability to HO including a linear detection range of 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!