Background: Physical activity (PA) reduces the risk of developing breast cancer (BC) and mortality rate in BC patients starting PA after diagnosis. Immunomodulation is considered responsible for these effects. However, limited data exist on the immunomodulation induced by moderate PA (mPA) during neoadjuvant chemotherapy (NACT). We have investigated the longitudinal change of cytokines during NACT alone or combined with mPA.
Materials And Methods: Twenty-three cytokines were analyzed in BC patients at consecutive timepoints: at baseline (T0), before starting mPA (T1), before surgery (T2), and after surgery (T3). mPA consisted of 3-weekly brisk-walking sessions for 9-10 consecutive weeks.
Results: Ninety-two patients were assessed: 21 patients refused mPA (untrained) and 71 agreed (trained). At T1, NACT induced significant up-regulation of interleukin (IL)-5, IL-6, IL-15, chemokine ligand (CCL)-2, interferon-γ, and C-X-C motif ligand (CXCL)-10 and reduction of expression of IL-13 and CCL-22. At T2, NACT and mPA induced up-regulation of IL-21, CCL-2, and tumor necrosis factor-α and reduction of expression of IL-8, IL-15, vascular endothelial growth factor, and soluble interleukin 6 receptor. Only CXCL-10 increased in untrained patients. A cytokine score (CS) was created to analyze, all together, the changes between T1 and T2. At T2 the CS decreased in trained and increased in untrained patients. We clustered the patients using cytokines and predictive factors and identified two clusters. The cluster A, encompassing 90% of trained patients, showed more pathological complete response (pCR) compared to the cluster B: 78% versus 22%, respectively.
Conclusions: mPA interacts with NACT inducing CS reduction in trained patients not observed in untrained patients, suggesting a reduction of inflammation, notwithstanding chemotherapy. This effect may contribute to the higher rate of pCR observed in the cluster A, including most trained patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11364046 | PMC |
http://dx.doi.org/10.1016/j.esmoop.2024.103665 | DOI Listing |
Int J Pediatr Otorhinolaryngol
January 2025
Otorhinolaryngology Department, Faculty of Medicine, Menoufia University, Menoufia, Egypt; Medicine and Surgery Program, Menoufia National University, Menoufia, Egypt. Electronic address:
Purpose: Familial Mediterranean fever (FMF) is the most prevalent genetic autoinflammatory disease worldwide. There are several novel advancements in pathophysiology, genetic testing, diagnosis, comorbidities, disease-related damage, and treatment strategies. This study aimed to assess the effect of tonsillectomy on FMF disease severity and activity.
View Article and Find Full Text PDFEur J Med Chem
January 2025
School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China. Electronic address:
Temozolomide, a widely used alkylating agent for glioblastoma treatment, faces significant challenges due to the development of resistance, which severely impacts patient survival. This underscores the urgent need for novel strategies to overcome this barrier. Focal adhesion kinase (FAK), an intracellular non-receptor tyrosine kinase, is highly expressed in glioblastoma cells and has been identified as a promising therapeutic target for anti-glioblastoma drug development.
View Article and Find Full Text PDFBiomed Phys Eng Express
January 2025
F. Joseph Halcomb III, MD, Department of Biomedical Engineering, University of Kentucky, 143 Graham Ave., Lexington, Kentucky, 40506, UNITED STATES.
Brain-computer interfaces (BCIs) offer disabled individuals the means to interact with devices by decoding the electroencephalogram (EEG). However, decoding intent in fine motor tasks can be challenging, especially in stroke survivors with cortical lesions. Here, we attempt to decode graded finger extension from the EEG in stroke patients with left-hand paresis and healthy controls.
View Article and Find Full Text PDFAnn Intern Med
January 2025
Department of Neurology, Stanford University, Palo Alto, California.
Ann Intern Med
January 2025
Durham VA Health Care System, Durham; and Division of General Internal Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina (K.M.G.).
Background: Tissue-based genomic classifiers (GCs) have been developed to improve prostate cancer (PCa) risk assessment and treatment recommendations.
Purpose: To summarize the impact of the Decipher, Oncotype DX Genomic Prostate Score (GPS), and Prolaris GCs on risk stratification and patient-clinician decisions on treatment choice among patients with localized PCa considering first-line treatment.
Data Sources: MEDLINE, EMBASE, and Web of Science published from January 2010 to August 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!