Hydroxyl radical mediated extracellular degradation of tetracycline under aerobic and anaerobic conditions stimulated by bio-FeS nanoparticles.

J Hazard Mater

Shandong Engineering Research Centre for Pollution Control and Resource Valorization in Chemical Industry, College of Environment and Safety Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China.

Published: October 2024

The extracellular degradation of antibiotics facilitated by bio-nanoparticles is significant in the field of waste valorization. Among different bio-nanoparticles, bio-FeS nanoparticles stand out for their convenient and cost-effective synthesis. Nevertheless, there is a lack of understanding regarding the extracellular degradation of pollutants driven by bio-FeS nanoparticles. Hence, this study aimed to investigate the role of bio-FeS nanoparticles in the extracellular degradation of tetracycline under aerobic and anaerobic conditions. The findings demonstrated that bio-FeS nanoparticles generated hydroxyl radical (·OH), which significantly contributes to the degradation of tetracycline in both aerobic and anaerobic environments. The production of ·OH in anaerobic conditions was primarily attributed to the limited formation of FeS during the biosynthesis of nanoparticles, which was very different from aerobic conditions. The bio-FeS nanoparticles facilitated extracellular electron transport by promoting electron shuttles and Fe(II)/Fe(III) cycling, resulting in the continuous production of ·OH. The degradation pathways showed differences under aerobic and anaerobic conditions, with intermediates exhibiting higher toxicity and greater cellular damage under aerobic conditions. However, in anaerobic conditions, bio-FeS nanoparticles enabled the successful integration of intracellular and extracellular degradation of tetracycline. This research proposed a new avenue for biocatalysis and environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2024.135450DOI Listing

Publication Analysis

Top Keywords

bio-fes nanoparticles
28
extracellular degradation
20
anaerobic conditions
20
degradation tetracycline
16
aerobic anaerobic
16
tetracycline aerobic
12
hydroxyl radical
8
nanoparticles
8
nanoparticles extracellular
8
production of ·oh
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!