Atomically dispersed ternary FeCoNb active sites anchored on N-doped honeycomb-like mesoporous carbon for highly catalytic degradation of 4-nitrophenol.

J Colloid Interface Sci

College of Geography and Environmental Sciences, College of Chemistry and Materials Science, Zhejiang Normal University, Jinhua, 321004, China. Electronic address:

Published: January 2025

In the last decades, 4-nitrophenol is regarded as one of highly toxic organic pollutants in industrial wastewater, which attracts great concern to earth sustainability. Herein, atomically dispersed ternary FeCoNb active sites were incorporated into nitrogen-doped honeycomb-like mesoporous carbon (termed FeCoNb/NHC) by a two-step pyrolysis strategy, whose morphology, structure and size were characterized by a set of techniques. Further, the catalytic activity and reusability of the as-prepared FeCoNb/NHC were rigorously examined by using 4-NP catalytic hydrogenation as a proof-of-concept model. The influence of the secondary pyrolysis temperature on the catalytic performance was investigated, combined by illuminating the catalytic mechanism. The resultant catalyst exhibited significantly enhanced catalytic features with a normalized rate constant (k) of 1.2 × 10 ming and superior stability, surpassing the home-made catalysts in the control groups and earlier research. This study provides some constructive insights for preparation of high-efficiency and cost-effectiveness single-atom nanocatalysts in organic pollutants environmental remediation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2024.08.027DOI Listing

Publication Analysis

Top Keywords

atomically dispersed
8
dispersed ternary
8
ternary feconb
8
feconb active
8
active sites
8
honeycomb-like mesoporous
8
mesoporous carbon
8
organic pollutants
8
catalytic
6
sites anchored
4

Similar Publications

Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.

View Article and Find Full Text PDF

Direct current magnetron sputtering was employed to fabricate In-N dual-doped SnO films, with varying concentrations of N in a mixed sputtering gas of N and argon (Ar). The quantity of -substituted O elements in the SnO lattice was confirmed through energy-dispersive X-ray spectroscopy (EDX) and X-ray photoelectron spectroscopy (XPS). A comprehensive investigation of properties of the In-N dual-doped SnO films was conducted using various techniques, including X-ray diffraction analysis, field-emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), ultraviolet absorption spectroscopy, Hall effect measurements, and current-voltage (-) characteristic assessments.

View Article and Find Full Text PDF

A phase-transited lysozyme coating doped with strontium on titanium surface for bone repairing via enhanced osteogenesis and immunomodulatory.

Front Cell Dev Biol

January 2025

Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Introduction: Titanium is currently recognized as an excellent orthopedic implant material, but it often leads to poor osseointegration of the implant, and is prone to aseptic loosening leading to implant failure. Therefore, biofunctionalization of titanium surfaces is needed to enhance their osseointegration and immunomodulation properties to reduce the risk of implant loosening. We concluded that the utilization of PTL-Sr is a direct and effective method for the fabrication of multifunctional implants.

View Article and Find Full Text PDF

A nitrogen-coordinated Fe single-atom catalyst (SA Fe-N/C) is synthesized using a homogeneous ethanol-based dissolution system with bamboo kraft lignin serving as the carbon source. Uniformly dispersed Fe atoms with an interatomic distance of less than 2 Å throughout the SA Fe-N/C structure are revealed through X-ray absorption spectral analysis and HAADF-STEM images, which possessed a high Fe loading of 2.69%.

View Article and Find Full Text PDF

This study simulated the dispersion of Cs in the North Pacific using a Lagrangian particle model, incorporating basin-wide atmospheric deposition and direct release from the Fukushima accident. Three experiments examined the impact of vertical diffusion and velocity on dispersion behavior. EXP01 and EXP02 assumed zero vertical velocity with different vertical diffusion coefficients (1 × 10 and 2 × 10 m/s, respectively), while EXP03 used a 3-day average vertical velocity and the same diffusion coefficient as EXP01.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!