Lake water surface temperature (LWST) is a critical component in understanding the response of freshwater ecosystems to climate change. Traditional estimation of LWST estimation considers water surface bodies to be static. Our work proposes a novel open-source web application, IMPART, designed for estimating dynamic LWST using Landsat reflectance and MODIS temperature datasets from 2004 to 2022. Results presented globally for over 342 lakes reveal a root mean square deviation of 0.86 °C between static and dynamic LWST. Additionally, our results demonstrate that 57% of the lakes exhibit a statistically significant difference between the static and dynamic LWST values. Improved LWST will ultimately enhance our ability to comprehensively monitor and respond to the impacts of climate change on freshwater ecosystems worldwide. Furthermore, based on the Koppen-Geiger climate classification, our zonal analysis demonstrates the deviation between static and dynamic LWST. It identifies specific zones where considering waterbodies as dynamic entities is essential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jenvman.2024.122075 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!