An innovative organic small molecule with a D-A structure was synthesized by connecting triphenylamine to BODIPY via a thiophene bridge. Triphenylamine and thiophene units ingeniously modulate the balance between steric hindrance and π-π interactions around the flat aza-BODIPY core. The molecule exhibits near-infrared fluorescence absorption and emits at roughly 1100 nm, featuring a significant Stokes shift. Both the molecule and its nanoparticles demonstrate high stability and achieve a remarkable 35 % photothermal conversion efficiency when conjugated with the P(OEGMA)-P(Asp) copolymer. In vitro assessments show low dark toxicity and outstanding biocompatibility. Moreover, in vivo studies and photothermal therapy in mice indicate substantial tumor shrinkage and reduced recurrence, confirming its potential in cancer treatment. These results highlight the promise of this organic molecule and its nanoparticles for NIR-II imaging-guided photothermal therapy, introducing a novel approach to phototheranostic applications for cancer management.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2024.126633 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!