Dynamical descriptions and modeling of natural systems have generally focused on fixed points, with saddles and saddle-based phase-space objects such as heteroclinic channels or cycles being central concepts behind the emergence of quasistable long transients. Reliable and robust transient dynamics observed for real, inherently noisy systems is, however, not met by saddle-based dynamics, as demonstrated here. Generalizing the notion of ghost states, we provide a complementary framework that does not rely on the precise knowledge or existence of (un)stable fixed points, but rather on slow directed flows organized by ghost sets in ghost channels and ghost cycles. Moreover, we show that the appearance of these novel objects is an emergent property of a broad class of models typically used for description of natural systems.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.133.047202DOI Listing

Publication Analysis

Top Keywords

ghost channels
8
channels ghost
8
ghost cycles
8
long transients
8
natural systems
8
fixed points
8
ghost
6
cycles guiding
4
guiding long
4
transients dynamical
4

Similar Publications

An effective vessel segmentation method using SLOA-HGC.

Sci Rep

January 2025

Faculty of Electronic Information and Physics, Central South University of Forestry and Technology, Changsha, 410004, Hunan, China.

Accurate segmentation of retinal blood vessels from retinal images is crucial for detecting and diagnosing a wide range of ophthalmic diseases. Our retinal blood vessel segmentation algorithm enhances microfine vessel extraction, improves edge texture clarity, and normalizes vessel distribution. It stabilizes neural network training for complex retinal vascular features.

View Article and Find Full Text PDF

Chemotherapy is essential for treating tumors, including head and neck cancer (HNC). However, the toxic side effects of chemotherapeutic drugs limit their widespread use. Therefore, a targeted delivery system that can transport the drug to the pathological site while minimizing damage to healthy tissues is urgently needed.

View Article and Find Full Text PDF

A new regulation mechanism for KCNN4, the Ca-dependent K channel, by molecular interactions with the Capump PMCA4b.

J Biol Chem

December 2024

Université Côte d'Azur, CNRS, Inserm, Institut Biologie Valrose, Nice, France; Laboratory of Excellence for RBC, LABEX GR-Ex, Paris, France. Electronic address:

KCNN4, a Ca-activated K channel, is involved in various physiological and pathological processes. It is essential for epithelial transport, immune system, and other physiological mechanisms, but its activation is also involved in cancer pathophysiology as well as red blood cell (RBC) disorders. The activation of KCNN4 in RBC leads to loss of KCl and water, a mechanism known as the "Gardos effect" described 70 years ago.

View Article and Find Full Text PDF

A Dual-Path Computational Ghost Imaging Method Based on Convolutional Neural Networks.

Sensors (Basel)

December 2024

College of Computer Science and Technology, Changchun University, Changchun 130022, China.

Article Synopsis
  • Ghost imaging uses light properties to reconstruct images indirectly and resists interference, making it a practical imaging method.
  • A new technique combining dual-path detection and convolutional neural networks is introduced to enhance the range of target image information.
  • The study incorporates a self-attention mechanism in the network, which optimizes focus and boosts reconstruction efficiency, showing promising results in simulations.
View Article and Find Full Text PDF

AMPK protects proximal tubular epithelial cells from lysosomal dysfunction and dedifferentiation induced by lipotoxicity.

Autophagy

December 2024

Laboratory of Metabolic and Molecular Biochemistry, Faculty of Medicine and Pharmacy, Research Institute for Health Sciences and Technology, University of Mons, Mons, Belgium.

Renal proximal tubules are a primary site of injury in metabolic diseases. In obese patients and animal models, proximal tubular epithelial cells (PTECs) display dysregulated lipid metabolism, organelle dysfunctions, and oxidative stress that contribute to interstitial inflammation, fibrosis and ultimately end-stage renal failure. Our research group previously pointed out AMP-activated protein kinase (AMPK) decline as a driver of obesity-induced renal disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!