Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose utilizing a polarization-tailored high-power laser pulse to extract and accelerate electrons from the edge of a solid foil target to produce isolated subfemtosecond electron bunches. The laser pulse consists of two orthogonally polarized components with a time delay comparable to the pulse duration, such that the polarization in the middle of the pulse rapidly rotates over 90° within few optical cycles. Three-dimensional particle-in-cell simulations show that when such a light pulse diffracts at the edge of a plasma foil, a series of isolated relativistic electron bunches are emitted into separated azimuthal angles determined by the varying polarization. In comparison with most other methods that require an ultrashort drive laser, we show the proposed scheme works well with typical multicycle (∼30 fs) pulses from high-power laser facilities. The generated electron bunches have typical durations of a few hundred attoseconds and charges of tens of picocoulombs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.133.045001 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!