Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Thin-film composite (TFC) membranes have gradually replaced some traditional technologies in the extraction, separation, and concentration of high value-added pharmaceutical ingredients due to their controllable microstructure. Nevertheless, devising solvent-stable, scalable TFC membranes with high permeance and efficient molecule selectivity is urgently needed to improve the separation efficiency in the separation process. Here, we propose phenolphthalein, a commercial acid-base indicator, as an economical monomer for optimizing the micropore structure of selective layers with thickness down to 30 nanometers formed by in situ interfacial reactions. Molecular dynamics simulations indicate that the polyarylate membranes prepared using three-dimensional phenolphthalein monomers exhibit tunable microporosity and higher pore interconnectivity. Moreover, the TFC membranes show a high methanol permeance (9.9 ± 0.1 liters per square meter per hour per bar) and small molecular weight cutoff (≈289 daltons) for organic micropollutants in organic solvent systems. The polyarylate membranes exhibit higher mechanical strength (2.4 versus 0.8 gigapascals) compared to the traditional polyamide membrane.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11313862 | PMC |
http://dx.doi.org/10.1126/sciadv.ado7687 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!