Biofortification of green leafy vegetables with pro-vitamin A carotenoids, such as β-carotene, has remained challenging to date. Here, we combined two strategies to achieve this goal. One of them involves producing β-carotene in the cytosol of leaf cells to avoid the negative impacts on photosynthesis derived from changing the balance of carotenoids and chlorophylls in chloroplasts. The second approach involves the conversion of chloroplasts into non-photosynthetic, carotenoid-overaccumulating chromoplasts in leaves agroinfiltrated or infected with constructs encoding the bacterial phytoene synthase crtB, leaving other non-engineered leaves of the plant to sustain normal growth. A combination of these two strategies, referred to as strategy C (for cytosolic production) and strategy P (for plastid conversion mediated by crtB), resulted in a 5-fold increase in the amount of β-carotene in Nicotiana benthamiana leaves. Following several attempts to further improve β-carotene leaf contents by metabolic engineering, hormone treatments and genetic screenings, it was found that promoting the proliferation of plastoglobules with increased light-intensity treatments not only improved β-carotene accumulation but it also resulted in a much higher bioaccessibility. The combination of strategies C and P together with a more intense light treatment increased the levels of accessible β-carotene 30-fold compared to controls. We further demonstrated that stimulating plastoglobule proliferation with strategy P, but also with a higher-light treatment alone, also improved β-carotene contents and bioaccessibility in edible lettuce (Lactuca sativa) leaves.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/tpj.16964 | DOI Listing |
Histol Histopathol
January 2025
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, India.
Autism spectrum disorder (ASD) is a globally recognized neurodevelopmental condition characterized by repetitive and restrictive behavior, persistent deficits in social interaction and communication, mental disturbances, etc., affecting approximately 1 in 100 children worldwide. A combination of genetic and environmental factors is involved in the etiopathogenesis of the disease, but specific biomarkers have not yet been identified.
View Article and Find Full Text PDFLab Anim
January 2025
Kastamonu University, Faculty of Medicine, Department of Physiology, Kastamonu, Turkey.
Diabetes mellitus, characterized by insufficient insulin secretion and impaired insulin efficacy, disrupts carbohydrate, protein, and lipid metabolism. The global diabetic population is expected to double by 2025, from 380 million, posing a significant health challenge. Most diabetic individuals fall into the type 1 or type 2 categories, and diabetes adversely affects various organs, such as the kidneys, liver, nervous system, reproductive system, and eyes.
View Article and Find Full Text PDFCurr Med Chem
January 2025
Shree S K Patel College of Pharmaceutical Education and Research, Ganpat University, Mahesana, Gujarat, 384012, India.
Therapeutic hurdles persist in the fight against lung cancer, although it is a leading cause of cancer-related deaths worldwide. Results are still not up to par, even with the best efforts of conventional medicine, thus new avenues of investigation are required. Examining how immunotherapy, precision medicine, and AI are being used to manage lung cancer, this review shows how these tools can change the game for patients and increase their chances of survival.
View Article and Find Full Text PDFWorld J Diabetes
January 2025
Department of Anatomy, Division of Human Biology, School of Medicine, IMU University, Kuala Lumpur 57000, Malaysia.
Diabetes mellitus, particularly type 2 diabetes mellitus (T2DM), poses a significant global health challenge. Traditional management strategies primarily focus on glycemic control; however, there is a growing need for comprehensive approaches addressing the complex pathophysiology of diabetes complications. The recent study by Attia explores the potential of a novel therapy combining metformin with cholecalciferol (vitamin D3) and taurine to mitigate T2DM-related complications in a rat model.
View Article and Find Full Text PDFWorld J Gastrointest Oncol
January 2025
Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404328, Taiwan.
This study examines the pivotal findings of the network meta-analysis of Zhou , which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma (HCC). This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments. The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!