Two-dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto-spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many-body magnetic excitons in the 2D AFM semiconductor NiI. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto-spintronic phenomena in the atomically thin limit.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11481216PMC
http://dx.doi.org/10.1002/advs.202407862DOI Listing

Publication Analysis

Top Keywords

photocurrent spectroscopy
16
magnetic excitons
12
dark magnetic
8
magnetic order
8
bilayer thickness
8
magnetic
5
photocurrent
4
spectroscopy dark
4
excitons
4
excitons multiferroic
4

Similar Publications

A novel metal-organic framework (MOF), (Cu-S)MOF, with a copper-sulfur planar structure was applied to photocatalytic H production application. (Cu-S)MOF@ZnS nanocomposite was synthesized using a microwave-assisted hydrothermal approach. The formation of (Cu-S)MOF and wurtzite ZnS in the composite nanoparticles was analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FESEM), and high-resolution transmission electron microscope (HRTEM).

View Article and Find Full Text PDF

Zinc ferrite (ZnFeO, ZFO) has gained attention as a candidate material for photoelectrochemical water oxidation. However, champion devices have achieved photocurrents far below that predicted by its bandgap energy. Herein, strong optical interference is employed in compact ultrathin film (8-14 nm) Ti-doped ZFO films deposited on specular back reflectors to boost photoanode performance through enhanced light trapping, resulting in a roughly fourfold improvement in absorption as compared to films deposited on transparent substrates.

View Article and Find Full Text PDF

Solvent-free synthesis of an efficient heterojunction CrO/g-CN composites for the photocatalytic removal of TC-HCl antibiotic and RO16 dye.

Environ Sci Pollut Res Int

December 2024

Center of Excellence for Innovation in Chemistry, Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, 90110, Songkhla, Thailand.

CrO/g-CN photocatalyst was successfully synthesized via the one-pot thermal polycondensation method by mixing different ratios of CrCl.HO and thiourea. Thiourea was used as the precursor for building g-CN.

View Article and Find Full Text PDF

Microwave-Field-Optimized GO/TiO Nanomaterials for Enhanced Interfacial Charge Transfer in Photocatalysis.

Nanomaterials (Basel)

November 2024

School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China.

The swift recombination of photo-induced electrons and holes is a major obstacle to the catalytic efficiency of TiO nanomaterials, but the incorporation of graphene oxide and out-field modification is considered a potent method to augment photocatalytic properties. In this work, a series of GO/TiO photocatalysts were successfully optimized by a microwave field. As determined by transient photocurrent response and electrochemical impedance spectroscopy (EIS) tests, microwave irradiation at 600 W for 5 min on the GO/TiO photocatalyst promoted interfacial charge transfer and suppressed charge recombination.

View Article and Find Full Text PDF

Interfacing CuO, CuBiO, and protective metal oxide layers to boost solar-driven photoelectrochemical hydrogen evolution.

Dalton Trans

December 2024

Energy Materials Laboratory, Chemistry, School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.

This article reports the development of CuO|CuBiO photocathodes stabilized by protective layers of TiO, MgO, or NiO, with Pt or MoS nanoparticles serving as co-catalysts to facilitate H evolution. Most notably, this work demonstrates the first application of MgO as a protection/passivation layer for photocathodes in a water-splitting cell. All configurations of photocathodes were studied structurally, morphologically, and photoelectrochemically revealing that CuO|CuBiO|MgO|Pt photocathodes achieve the highest stable photocurrent densities of -200 μA cm for over 3 hours with a Faradaic efficiency of ∼90%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!