Peripheral microvascular dysfunction has been documented in patients with heart failure with preserved ejection fraction (HFpEF), which may be related to elevated levels of inflammation and oxidative stress. Unfortunately, few strategies have been identified to effectively ameliorate this disease-related derangement. Thus, using a parallel, double-blind, placebo-controlled design, this study evaluated the efficacy of 30-day atorvastatin administration (10 mg daily) on lower limb microvascular reactivity, functional capacity, and biomarkers of inflammation and oxidative stress in patients with HFpEF (statin, = 8, 76 ± 6 yr; placebo, = 8, 68 ± 9 yr). The passive limb movement (PLM)-induced hyperemic response and 6-min walk test (6MWT) distance were evaluated to assess ambulatory muscle microvascular function and functional capacity, respectively. Circulating biomarkers were also measured to assess the contribution of changes in inflammation and redox balance to these outcomes. The total hyperemic response to PLM, assessed as leg blood flow area under the curve (LBF), increased following the statin intervention (pre, 60 ± 68 mL; post, 164 ± 90 mL; < 0.01), whereas these variables were unchanged in the placebo group ( = 0.99). There were no significant differences in 6MWT distance following statin or placebo intervention. Malondialdehyde (MDA), a marker of lipid peroxidation, was significantly reduced following the statin intervention (pre, 0.68 ± 0.10; post, 0.51 ± 0.11; < 0.01) while other circulating biomarkers were unchanged. Together, these data provide new evidence for the efficacy of low-dose statin administration to improve locomotor muscle microvascular reactivity in patients with HFpEF, which may be due, in part, to a diminution in oxidative stress. This was the first study to investigate the impact of statin administration on locomotor muscle microvascular function in patients with HFpEF. In support of our hypothesis, the total hyperemic response to PLM, assessed as leg blood flow area under the curve, increased, and malondialdehyde, a marker of oxidative damage, was reduced following the statin intervention. Together, these data provide new evidence for the efficacy of statin administration to improve locomotor muscle microvascular reactivity in patients with HFpEF, which may be due, in part, to reduced oxidative stress.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11482264PMC
http://dx.doi.org/10.1152/ajpheart.00427.2024DOI Listing

Publication Analysis

Top Keywords

muscle microvascular
20
locomotor muscle
16
microvascular reactivity
16
oxidative stress
16
patients hfpef
16
reactivity patients
12
hyperemic response
12
statin intervention
12
statin administration
12
statin
9

Similar Publications

Vascular HIF2 Signaling Prevents Cardiomegaly, Alveolar Congestion, and Capillary Remodeling During Chronic Hypoxia.

Arterioscler Thromb Vasc Biol

January 2025

Metabolic and Immune Diseases Department, Biomedical Research Institute Sols-Morreale (IIBM), National Research Council (CSIC), Autonoma University of Madrid, Spain (T.A.-G., S.M.-T., R.C.-M., S.U.-B., S.M.-P.).

Background: Hypoxia is associated with the onset of cardiovascular diseases including cardiac hypertrophy and pulmonary hypertension. HIF2 (hypoxia-inducible factor 2) signaling in the endothelium mediates pulmonary arterial remodeling and subsequent elevation of the right ventricular systolic pressure during chronic hypoxia. Thus, novel therapeutic opportunities for pulmonary hypertension based on specific HIF2 inhibitors have been proposed.

View Article and Find Full Text PDF

Background And Objective: Diabetic neuropathy significantly elevates the risk of foot ulceration and lower-limb amputation, underscoring the need for precise assessment of tissue perfusion to optimize management. This narrative review explores the intricate relationship between sympathetic nerves and tissue perfusion in diabetic neuropathy, highlighting the important role of autonomic neuropathy in blood flow dynamics and subsequent compromises in tissue perfusion. The consequences extend to the development of diabetic peripheral neuropathy and related foot complications.

View Article and Find Full Text PDF

Background And Aims: Skeletal muscle (SM) fat infiltration, or intermuscular adipose tissue (IMAT), reflects muscle quality and is associated with inflammation, a key determinant in cardiometabolic disease. Coronary flow reserve (CFR), a marker of coronary microvascular dysfunction (CMD), is independently associated with body mass index (BMI), inflammation and risk of heart failure, myocardial infarction, and death. The relationship between SM quality, CMD, and cardiovascular outcomes is not known.

View Article and Find Full Text PDF

Purpose: Dysfunction of vasomotor reactions due to arteriolar smooth muscle causes serious adverse events, such as loss of hemodynamic coherence. This in turn can increase risks of cardiovascular-related diseases. A noninvasive and quantitative evaluation of microvascular disorder is therefore very important for early diagnosis and treatment.

View Article and Find Full Text PDF

Dyslipidemia, abnormal levels of lipids in the bloodstream, is associated with cardiovascular disease risk (CVD). The purpose of this study was to evaluate the effects of dyslipidemia on cardiometabolic health in relatively young, healthy adults. Participants were 54 healthy males and females aged 18-60 years.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!