Obesity is a major source of morbidity worldwide with more than 2 billion adults being overweight or obese. The incidence of obesity has tripled in the last 50 years, leading to an increased risk for a variety of noncommunicable diseases. Previous studies have demonstrated the positive effects of green leafy vegetables on weight gain and obesity and have attributed these beneficial properties, at least in part, to nitrates and isothiocyanates. Nitrates are converted to nitric oxide (NO) and isothiocyanates are known to release hydrogen sulfide (HS). Herein, we investigated the effect of extracts and fractions produced from Beta vulgaris and Eruca sativa for their ability to limit lipid accumulation, regulate glucose homeostasis, and reduce body weight. Extracts from the different vegetables were screened for their ability to limit lipid accumulation in adipocytes and hepatocytes and for their ability to promote glucose uptake in skeletal muscle cultures; the most effective extracts were next tested in vivo. Wild type mice were placed on high-fat diet for 8 weeks to promote weight gain; animals receiving the selected B. vulgaris and E. sativa extracts exhibited attenuated body weight. Treatment with extracts also led to reduced white adipose tissue depot mass, attenuated adipocyte size, reduced expression of Dgat2 and PPARγ expression, and improved liver steatosis. In contrast, the extracts failed to improve glucose tolerance in obese animals and did not affect blood pressure. Taken together, our data indicate that extracts produced from B. vulgaris and E. sativa exhibit anti-obesity effects, suggesting that dietary supplements containing nitrates and sulfide-releasing compounds might be useful in limiting weight gain.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.8291DOI Listing

Publication Analysis

Top Keywords

weight gain
12
anti-obesity effects
8
beta vulgaris
8
vulgaris eruca
8
extracts
8
ability limit
8
limit lipid
8
lipid accumulation
8
body weight
8
vulgaris sativa
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!