Michelson Interferometric Methods for Full Optical Complex Convolution.

Nanomaterials (Basel)

Optelligence LLC., 10703 Marlboro Pike, Upper Marlboro, MD 20772, USA.

Published: July 2024

Optical real-time data processing is advancing fields like tensor algebra acceleration, cryptography, and digital holography. This technology offers advantages such as reduced complexity through optical fast Fourier transform and passive dot-product multiplication. In this study, the proposed Reconfigurable Complex Convolution Module (RCCM) is capable of independently modulating both phase and amplitude over two million pixels. This research is relevant for applications in optical computing, hardware acceleration, encryption, and machine learning, where precise signal modulation is crucial. We demonstrate simultaneous amplitude and phase modulation of an optical two-dimensional signal in a thin lens's Fourier plane. Utilizing two spatial light modulators (SLMs) in a Michelson interferometer placed in the focal plane of two Fourier lenses, our system enables full modulation in a 4F system's Fourier domain. This setup addresses challenges like SLMs' non-linear inter-pixel crosstalk and variable modulation efficiency. The integration of these technologies in the RCCM contributes to the advancement of optical computing and related fields.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314083PMC
http://dx.doi.org/10.3390/nano14151262DOI Listing

Publication Analysis

Top Keywords

complex convolution
8
optical computing
8
optical
6
michelson interferometric
4
interferometric methods
4
methods full
4
full optical
4
optical complex
4
convolution optical
4
optical real-time
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!