A multi-stimuli responsive fluorophore, named NBDNI, was developed by constructing a 1,8-naphthalimide derivative in which a rotatable electron-donating N,N-dimethylaniline group attached to its 4-position. This molecular structure endowed NBDNI with aggregate-induced emission (AIE) and twisted intramolecular charge transfer (TICT) properties, enabling remarkable fluorescence changes in response to multiple external stimuli: (i) sensitivity to polarity in various solvent systems and polymer matrix; (ii) significant fluorescence response and excellent linearity towards temperature changes in solution; (iii) distinct switch of fluorescence color upon acid and base treatments; (iv) reversible mechanochromism behavior in the solid state. Moreover, the mechanisms underlying the aforementioned stimuli-responsive phenomena have been proposed based on comprehensive systematic measurements. Furthermore, preliminary applications such as fluorescence thermometry and acid/base test paper have been demonstrated. This research will bring about new opportunities for the development of novel stimuli-responsive luminescent materials.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11314401 | PMC |
http://dx.doi.org/10.3390/nano14151255 | DOI Listing |
Angew Chem Int Ed Engl
November 2024
Julius-Maximilians-Universität Würzburg, Institute of Inorganic Chemistry and Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Am Hubland, 97074, Würzburg, Germany.
Incorporation of BN units into π-conjugated organic compounds, as substitutes for specific CC couples, often leads to new hybrid materials with modified physical and chemical properties. Poly(p-phenylene iminoborane)s are derived from well-known poly(p-phenylene vinylene) (PPV) by replacement of the vinylene groups by B=N linking units. Herein, an unprecedented poly(p-phenylene iminoborane) is presented that features a strictly alternating sequence of BN units along the main chain.
View Article and Find Full Text PDFSmall
November 2024
CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China.
Surface-enhanced resonance Raman scattering (SERRS) in the second near-infrared (NIR-II) window has great potential for improved phototheranostics, but lacks nonfluorescent, resonant and high-affinity Raman dyes. Herein, it is designed and synthesize a multi-sulfur Raman reporter, NF1064, whose maximum absorption of 1064 nm rigidly resonates with NIR-II excitation laser while possessing absolutely nonfluorescent backgrounds. Ultrafast spectroscopy suggests that the fluorescence quenching mechanism of NF1064 originates from twisted intramolecular charge transfer (TICT) in the excited state.
View Article and Find Full Text PDFJ Phys Chem B
October 2024
Department of Chemistry and Chemical Biology, Indian Institute of Technology (Indian School of Mines) Dhanbad, Dhanbad826004, Jharkhand, India.
Three novel core green fluorescent protein (GFP) chromophore analogues, based on a doubly locked conformation and variable electronic effects by replacing one hydrogen with bromine, iodine, and methyl, respectively, have been synthesized to modulate the push-pull effect. These chromophores exhibited intramolecular H-bonding, as evidenced by single-crystal X-ray and H NMR studies. The fluorescence quantum yields (ϕ) of all of the chromophores were found to be more than an order of magnitude higher (∼0.
View Article and Find Full Text PDFJ Colloid Interface Sci
February 2025
Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China. Electronic address:
ACS Biomater Sci Eng
November 2024
National Engineering Laboratory for Advanced Yarn and Fabric Formation and Clean Production, Technology Institute, Wuhan Textile University, Wuhan, Hubei 430200, China.
Developing aggregation-induced emission (AIE)-based hydrogels that exhibit fluorescence enhancement as to thermal properties is an interesting and challenging task. In this work, we employed the fluorophore 2'-hydroxychalcone (HC), fluorescence properties of which are easily influenced by the excited-state intramolecular proton transfer and twisted intramolecular charge transfer (TICT) effects, to develop a novel type of temperature-sensitive polymers, hydroxychalcone-based polymers (HCPs). By controlling the temperature-dependent water microenvironments in HCPs, the intramolecular hydrogen bonds between water and HCPs can be regulated, thereby influencing the TICT process and leading to thermo-induced fluorescence enhancement, which shows a contrary tendency compared to typical AIEgens that always exhibit fluorescence attenuation as the thermal energy accelerates the molecular motion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!